
30

ESARDA BULLETIN, No. 64, Issue 1, June 2022

Stochastic Approach to Inspection Evaluation: 
Methodology and Validation
Lohith Annadevula1, S. K. Aghara1, Kenneth Jarman2 and Logan Joyce1

1University of Massachusetts Lowell, Lowell, MA, USA
2Pacific Northwest National Laboratory, Richland, WA, USA

Abstract

The paper discusses the methodology for performing 
International Atomic Energy Agency’s (IAEA’s) post-
inspection analysis to assess the ef fectiveness of 
verification inspection plans using a stochastic method. 
Conventionally, well-established statistical distributions are 
employed to calculate Detection Probability (DP) which is 
the effectiveness metric for both planning and evaluation 
purposes. The detection probability here is the probability 
of detecting at least one “defective” item (an item from 
which material has been removed) from the multi-defect 
sample space of items. The DP, in turn depends on the 
probability that a defected item is randomly selected for 
measurement (the “selection probabil ity”) and the 
probability that the applied measurement identifies the 
defect (the “identification probability”). The stochastic 
method described here involves simulating the inspection 
process by randomly choosing a fixed number of items 
from a population of items and performing measurements 
for these samples. A detection probability value is 
calculated at the end of a simulation depending on the 
random outcome. Multiple such simulations/trials are 
performed on the same sample space to get multiple 
detection probabilities. The Final Detection Probability and 
its uncertainty are estimated by computing the average and 
standard error of all the DP values from all simulations. The 
stochastic model development, its verif ication, and 
benchmarking are discussed in detail.

Keywords: Stochastic Approach; Detection Probability; 
Selection Process

1.	 Introduction

The increase in computational power in modern computers 
and the development of pseudorandom generators have 
resulted in the prevalent use of state-of-the-art Monte-Car-
lo/Stochastic methods [1] for many applications. These 
methods allow us to harness the computational power to 
simulate real-world experiments involving probabilities and 
random processes. With known outcomes and outcome 
probability distribution function (pdf) [2], any random pro-
cess can be simulated by invoking a pseudorandom gener-
ator satisfying the required pdf function. The outcomes 
simulated by the random generator can contain related and 
unrelated events to our quantity of interest. For example, in 
the coin-toss experiment, if the probability of getting Heads 
P(Heads) is our quantity of interest, then Head events are 
related events, and Tail events are unrelated to our quantity. 
Such quantities of interest that are involved in the process 
can be derived/computed based on the relative frequency 
with which the random generator simulates the quantity-re-
lated events. The true power of stochastic methods be-
comes apparent when dealing with complex random pro-
cesses which contain multiple simple random processes 
embedded within the complex process. Such complex 
processes can be simulated by invoking multiple pseudor-
andom number generators, with each generator simulating 
one of the embedded simpler random processes. The en-
tire complex process can be simulated by concatenating 
the outputs of one simple process with the input of another 
simple process. The real-world inspection problem is an 
example of such a complex random process. It has a ran-
dom selection process followed by an instrumental meas-
urement process embedded sequentially. The detection 
probability DP is the primary quantity of interest. In further 
sections, we shall describe the conventional way of deter-
ministically evaluating DP using distributions and evaluating 
DP from stochastic simulations.

A probabilistic model of the IAEA’s inspection problem [3] is 
that of random selection from a set of identical items, from 
some of which a proliferator has removed some amount of 
material. Items from which material has been removed are 
referred to as defects or defective items. The original set of 
items following proliferation, in general, contains both de-
fects and non-defects. Depending on the proliferator's di-
version strategy, multiple types of defects (each type of 
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defect is resulted from removing different amounts of mate-
rial from the original item) can be induced in the sample 
space. For example, consider a sample space or a stratum 
containing ten items; following diversion, two of the items 
are transformed into Defects, and the rest remain un-
changed (ND). Among the two defects, assume both are 
different types of Defects (D1, D2). 

Sample space: {D1, D2, ND} = [1, 1, 8]; Total = 10 items.

In the remainder of this section, we illustrate a deterministic 
approach to calculating the probability of detecting diver-
sion using the above example. In sections 2 & 3, we de-
scribe the stochastic approach and demonstrate its appli-
cation to examples, including validation of the approach 
against a previously published deterministic solution.

1.1	 Illustration of a Deterministic Approach

The inspection process involves randomly selecting a few 
items and performing measurements on the selected items 
using an instrument (method) from a range of choices, 
each with a unique measurement fidelity and uncertainty. 
The instrument or method’s ability to detect a specific item 
in the sample space as a defect varies with the type of item 
being measured, characterized as a probability that the 
measurement method identifies a defective item. This prob-
ability is termed Identification probability (IP). Assume that 

the instrument identifies D1 items 100% of the time as de-
fected, D2 items 50% of the time, and the measurement 
never identifies non-defects as defected, i.e., IP = 0%. 

[IPD1, IPD2, IPND] = [1, 0.5, 0] 

Analytically, the overall DP is computed by summing up in-
dividual DP components corresponding to all possible out-
comes of the random selection of the set of items in the 
sample space. For each outcome, its DP value is given by 
the product of the outcome’s selection probability (SP) and 
identification probability (IP). The conditional tree diagram in 
Figure 1 exemplifies the identification of all possible selec-
tion outcomes and the determination of each outcome’s 
selection probability.

For Single Measurement Inspection, a single item is ran-
domly sampled for measurement. The left conditional tree 
diagram in Figure 1 shows three possible outcomes of sin-
gle measurement sampling where one of the three item 
types will be selected. Therefore, for a single measurement 
inspection, the Detection Probability DP is given by the 
sum of component DPs of all outcomes.

DP = SPD1*IPD1 + SPD2*IPD2 + SPND*IPND = (1/10)*1  
+ (1/10)*0.5 + (8/10)*0 = 0.15 = 15%.

Figure 1: Conditional Tree Diagrams Depicting Various Outcomes and their Selection Probabilities.
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TDP = Total detection probability

The terms  represent typical combination operation 

Note that x1, x2, and x3 values vary for different outcomes or 
combinations.

Calculation of Selection Probabilities:

•	[D1 D2] and [D2 D1] combination: 

•	[D1 ND] and [ND D1] combination: 

•	[D2 ND] and [ND D2] combination: 

[ND ND] combination: 

The usage of the multivariate hypergeometric distribution 
multiple times is necessary to account for selection proba-
bilities for various possible outcomes. With the increase in 
the number of measurements and item types in the sample 
space, the inspection outcomes increase exponentially. 
This exponential increase in inspection outcomes quickly 
limits the model's performance in terms of computational 
resources (CPU and Memory). The development, perfor-
mance and limitations of conditional tree-based determinis-
tic models will be discussed extensively in a forthcoming 
paper [9]. The illustration of DP calculations based on a de-
terministic approach shows how the calculation can quick-
ly become rather complicated (in terms of identifying out-
comes) even for a single stratum of material, let alone 
multiple strata within a facility and ultimately multiple facili-
ties within a state. So far, the examples depicted in Figure 
(1) use a single instrument or measurement method, and it 
must be noted that the deterministic models get even more 
complicated in multi-instrument inspections. This is why 

For Double Measurement inspection, two items are ran-
domly sampled for measurement. There are seven possible 
combinations described in the right conditional tree dia-
gram in Figure 1. As the number of item types and meas-
urements increases, the total combinations of selection 
outcomes required to evaluate DP quickly gets large. For a 
generic data set of items  and number of measurements 
n the multivariate hypergeometric PDF (denoted ‘MVHG_
PDF’ below) is used to compute selection probabilities of 
different combinations of outcomes as shown below. The 
MVHG_PDF gives the conditional probability of n draws, 
without replacement, from a finite population of size N that 
contains i types of items with Ii numbers in the population 
leading to the selection of xi numbers of respective item 
types in the outcome upon sampling.

 

      

The variables and constants used in the equations above 
are as follows:

i = 3 (Three item types in stratum {D1, D2, ND})

I1 = Total number of D1 items = 1

I2 = Total number of D2 items = 1

I3 = Total number of ND non-defect items = 8

N = Total number of items in stratum = I1 + I2 + I3 = 10

n = Number of items randomly sampled from total items for 
inspection = 2

x1 = Number of D1 items in sample

x2 = Number of D2 items in sample

x3 = Number of ND items in sample

NIPi = non-identification probability of ith item type = 1 - IPi

Combination Type Select ion 
Probability

N o n - D e t e c t i o n 
Probability

[D1 D2] and [D2 D1] 

[D1 ND] and [ND D1] 

[D2 ND] and [ND D2]

[ND ND]

Total Non-Detection Probability

Total Detection Probability

Table 1: Calculation of Total Detection Probability for Double-item 
Measurement Inspection
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ensemble) and store the outcomes as 0s and 1s. The en-
semble mean or the mean of the outcomes of 100 trials will 
yield a value close to 0.5 with an estimate of error associat-
ed with the result. By increasing the number of simulations/
trials, the ensemble mean will get closer to 0.5. Theoretical-
ly, the value will converge to 0.5 with zero error with an infi-
nite number of trials. Thus, using the stochastic approach, 
the probability of the outcome “Heads” is estimated by re-
peatedly simulating a coin toss using a pseudorandom 
number generator multiple times, counting the occurrence 
of ”Heads” and dividing by the total number of simulations 
(or, equivalently, averaging the numerical values assigned to 
Heads and Tails) represents the stochastic solution. In the 
following sub-section, we describe the application of the 
stochastic process to evaluate the effectiveness of the 
IAEA inspection using pseudorandom generators. 

2.1	 Methodology for Inspection Problem

Applying the stochastic approach to inspection involves 
simulation of the random selection of a specified number of 
items from the set of all possible items, followed by meas-
urements on selected items. For each simulation, a DP val-
ue (the outcome) is calculated. The simulation is repeated 
multiple times to acquire a sufficient distribution of DP val-
ues (the ensemble). The mean of this distribution is the de-
sired approximation to DP (the stochastic solution) for the 
specified inspection campaign data. 

2.1.1	 Selection Process

Consider the single-item and double-item inspection exam-
ples discussed in Section 1, where items are randomly se-
lected from the set of one D1, one D2, and eight ND items. 
Consider  inspection simulations representing  in-
dependent ensembles of  trials each. For practical rea-
sons, it is convenient to split the total number of trials into 
multiple ensembles. Figure 2 describes the outcomes of 

 simulations for single- and double-item inspection 
examples.

the deterministic models developed in literature are case-
specific and lack universal applicability.

A stochastic approach provides an intuitive and flexible al-
ternative. It involves simulating the inspection process, ran-
domly selecting items from the stratum followed by instru-
mental measurements on each selected item, and repeating 
this simulation multiple times to acquire a distribution of DP 
values. The mean of this distribution of simulated DP values 
and its standard error provide estimates of the total DP and 
its uncertainty, respectively. The accuracy of the result in-
creases with the increase in the number of simulated in-
spections. Individual inspection simulations require low 
computer memory requirements relative to the deterministic 
approach. Individual simulations are independent of each 
other, so the increase in computational cost is primarily in 
terms of CPU, which is easily manageable on a generic 
multi-threading and multi-core computer. We discuss the 
stochastic approach in detail in the next section.

2.	 Stochastic Approach

The stochastic approach uses a set of random simulations 
or trials, called an ensemble, to generate a distribution of 
outcomes from which the best estimate of the desired 
quantity is computed. The stochastic nomenclature used in 
this paper is summarised below:

•	Stochastic Simulation/Trial: A single (pseudo-) random 
sample of a random variable or process.

•	Outcome: A possible result of a simulation or trial.

•	Ensemble: A set of outcomes acquired from multiple sim-
ulations or trials.

•	Ensemble Mean: The mean of an ensemble (when out-
comes are numerical values).

•	Stochastic Solution: An estimate of the desired quantity 
acquired from ensemble means (this may involve multiple 
ensembles and is computed from the average of all en-
semble means).

•	Stochastic Standard Error: Standard error in the estimat-
ed stochastic solution computed using the ensemble 
means.

A simple example problem illustrates the application of the 
stochastic approach. Suppose we simulate an unbiased 
coin-toss experiment where the outcomes are Heads or 
Tails. To estimate the probability of getting “Heads” on a 
single toss, the act of tossing is simulated many times us-
ing a uniform pseudorandom number generator which 
yields a value of 0 or 1. In each simulation or trial, a number 
is sampled from the pseudorandom generator; getting 1 is 
equivalent to getting Heads, and 0 means Tails, respective-
ly. Since we are looking for Head events, we assign the val-
ue 1 to the stochastic outcome when a Head turns up. If a 
Tail turns up, we assign 0 to the stochastic outcome. We 
simulate the experiment 100 times (collectively called an 

Figure 2: Random Selection Matrices Depicting Various 
Outcomes and their Event spaces.
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steps to get to the final DP estimate and its standard error 
in detail in section 2.2. 

Figure 5: The Outcome Detection Probability Matrices 

2.2	 Stochastic Standard Error

Let Xij represent DP for the ith simulation and jth ensemble. 
The values for ‘i' range from 1 to N trials, and ‘j’ takes val-
ues from 1 to M ensembles. Assume that all DP values are 
independent and identically distributed random variables 
with mean μ and variance . The complete set of DP val-
ues from Figure 5 can be represented in terms of the fol-
lowing matrix:

2.2.1	 Overall Statistics

The overall estimate of DP and uncertainty can, in principle, 
be calculated by the simple statistical formulas below:

	 	
(1)

2.1.2	 Identification Process

The second step of the inspection process involves meas-
uring the selected items. Measuring selected items will al-
low the inspector to identify defects. Using the same identi-
fication probabilities as in the deterministic treatment, [IPD1, 
IPD2, IPND] = [1, 0.5, 0] gives identification probabilities and 
NIP = 1-IP gives the non-identification probabilities. The 
identification step involves replacing the item types within 
the simulation matrices with their overall non-identification 
probabilities. The items in Figure 2 are replaced by their 
non-identification probabilities to get Figure 3. Then the 
overall outcome identification probabilities are computed in 
Figure 4 by multiplying item NIPs within all brackets present 
in Figure 3.

Figure 3: Non-Identification Probability Matrices  

Figure 4: The Overall Outcome Non-Identification Probability 
Matrices 

2.1.3	 Computing Detection Probability DP

To compute the overall DP for a specific inspection cam-
paign, we must first calculate the non-detection probability 
(NDP) corresponding to each simulated inspection. The 
non-identification probability (NIP) value for each outcome 
shown in Figure 4 is, in fact, the NDP value for the respec-
tive outcome. The detection probability is 1 - NDP, as 
shown in Figure 5. For each ensemble of  trials, our im-
plementation of the stochastic approach computes an en-
semble mean DP and standard error. The approach then 
computes the aggregate mean and standard error over the 

 ensembles. We shall discuss all the necessary derivation 

Here we make use of the typical statistical notation:    de-
notes the estimated mean, which is the average of all DP 
values,  ;  denotes sample standard deviation, and  
denotes standard error in the estimated parameter. Howev-
er, we first calculate these statistics for individual ensem-
bles of  DP values and then aggregate them across en-
sembles to estimate a final DP value and uncertainty. The 
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is simply the average of ensemble means, as noted in 
Equation (3). The standard error is computed as follows [6]:

Converting Variances into Standard errors,

		

        
(4)

	 	

(5)

The Overall Average  from Equation (5) gives the best esti-
mate of Detection Probability, with Equation (4) as the best 
estimate of its standard error . Based on the de-
scribed stochastic approach, a python model has been de-
veloped. The model allows users to input the required 

reason for breaking the entire collection of outcomes into 
separate ensembles has to do with our lack of knowledge 
of the number of simulations/trials needed to achieve a tar-
get convergence criterion prior to simulations. It is compu-
tationally convenient to run one ensemble of N simulations/
trials at a time, estimate running standard error, and decide 
based on the acquired error whether to run further ensem-
bles or not. The following sub-sections consider the statis-
tics for individual ensembles and across the ensembles of 
simulation averages.

2.2.2	 Ensemble Statistics

Each ensemble consists of  trials that yield N DP values. 

For the th ensemble, the mean, standard deviation, and 
standard error in the mean are as follows:

	 	
(2)

	

2.2.3	 Statistics Across Ensembles

Aggregate mean, standard deviation, and standard error 
across the ensembles may be computed as follows:

	 	
 (3)

2.2.4	 Overall Statistics: Combining Ensemble & Across 
Ensemble Statistics

The breakdown of the complete set of simulations into mul-
tiple subsets of ensembles is similar to the “within-group” 
and “across-group” calculations used in the analysis of var-
iance (ANOVA) [5]. We apply the same calculations used in 
ANOVA to compute overall statistics. First, the overall mean 
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standard error in DP estimate, trials per ensemble, and 
case data. The model starts with a single ensemble of sto-
chastic simulations and computes DP & standard error us-
ing equations (4) & (5). It initiates a new ensemble of sto-
chastic simulations, recomputes running error, and repeats 
the process until the running standard error converges to a 
user-set value. The single-item & double-item inspection 
examples are simulated using the stochastic model with 
the required error set to 0.002, and the number of trials per 
ensemble N is set to 2000. For the single-item inspection 
example, the code ran 13 ensembles, and the final DP val-
ue is 0.148 with 0.002 as the standard error in the estimate. 
For the double-item inspection case, the code ran 21 en-
sembles, and the final DP value is 0.287 with 0.002 as the 
standard error in the estimate. By comparison, the sto-
chastic results agree with the deterministic results in sec-
tion 1.1, i.e., DP is 0.15 for the single-item inspection, and 
DP is 0.289 for the double-item inspection.

3.	 Validation of the Stochastic Approach

In the publication Krieger et al. [7], the authors investigate 
scenarios to develop inspection sampling plans for invento-
ry verification of spent fuel ponds. The paper discusses 
probable diversion scenarios from the spent fuel storage 
ponds and calculates the achieved DP for the specified 
sampling plans. We choose this paper primarily as it defines 
various inspection scenarios, treats them deterministically, 
and computes DP, all in one place, sufficient for our bench-
marking purposes. We calculate the DP for two cases men-
tioned in the paper [7] using our stochastic approach [4] 
and compare our results to the published results [7, 8].

3.1	 Example: Varying Falsified Pins

In this example, the spent fuel pond contains 2500 (N) 
spent fuel assemblies (SFAs), with each assembly contain-
ing 96 (L) fuel pins. In terms of material, each assembly 
contains 2 kg or 0.25 SQ ( ) of Pu. A total goal amount ( ) 
of 1 SQ or 8 Kg of Pu is chosen to be diverted by removing 

pins from each assembly. To acquire 1 SQ would require 

SFA assemblies from which pins pins are removed while the 
remaining - SFA assemblies remain untouched. The pins 
falsified pins per assembly are varied from 1 to 96 in steps 
of 1. The total number of assemblies SFA required to divert 
1 SQ is given by equation (6).

	         	

(6)
	      	

Out of 2500 SFAs, the inspector verifies n1 SFAs with the 
ICVD, n2 SFAs with the DCVD, and n3 SFAs with the PGET, 
where per verified SFA only one measurement instrument 
is applied. For the given example, the values of n1, n2, and 
n3 are taken to be 10, 65 & 25 measurements, respectively. 

Each instrument’s identification probability function is 
modeled as a step function; i.e., the identification probability 
is 0 or 1 when the number of pins diverted in a measured 
assembly is less than or greater than a certain % of total 
pins, respectively, as shown in Equation (7). The ICVD 
detects diversion only when 100% of pins are absent from 
the measured SFA. DCVD detects diversion when 30% of 
total pins are absent. PGET detects diversion when 0.38% 
of total pins are missing from the measured SFA. Therefore, 
the piece-wise function in Equation (7) gives the instrument 
identification probability.     

  	
(7)

The following summarizes Equation (7) and the number of 
measurements for each instrument type:

The overall DP for this example has been discussed in 
Krieger et al. [7]. The piece-wise DP equation from [7] is re-
peated below.

(8)

We applied the stochastic approach to compute the overall 
detection probability and uncertainty with Equations (4) and 
(5). We used 2000 trials per ensemble with a target stand-
ard error set to 0.002. The code automatically generates 
ensembles until the running standard error is less than or 
equal to the set value. Convergence in standard error with 
number of ensembles to the set value is illustrated in Figure 
(6). The plot demonstrates how different falsified pin exam-
ples converge at a different rate to the set error and also 
shows the practicality of estimating running standard error 
that allowed the code to stop initiating additional ensem-
bles when the error reaches the set value. The determinis-
tic and stochastic results are co-plotted in Figure (7), show-
ing the agreement between both. The same agreement is 
further depicted in the residual plot of Figure (8), where the 
difference between deterministic and stochastic DPs are 
computed and plotted along with set standard error limits. 
All the residual values plotted in Figure (8) lie within the 
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limits of three times set standard error, indicating the agree-
ment of the stochastic results with that of deterministic 
results.

The lowest detection probability occurs at pins = 28. The 
deterministic estimate of DP is 0.1315, while the estimate 
using the stochastic approach is 0.1309 with 0.0019 as its 
standard error. The residual between deterministic and sto-
chastic DP estimates is 0.0006, which lies within the limits 
of twice the stochastic standard error (± 2*SE), i.e., ± 
0.0038. Therefore, the stochastic results agree with deter-
ministic results.

Figure 6: Convergence in standard error with number of en-
sembles for different pin examples. 

Figure 7: Co-plot of Deterministic & Stochastic Detection Prob-
abilities for Varying  pin Example. 

Figure 8: DP Residual plot for Varying  pin  example; all residu-
als lie within limits of three times the set error.

3.2	 Example: Multi-Group Diversion

In this example, the spent fuel pond contains 2000 (N) 
Spent Fuel Assemblies with each assembly containing 96 
(L) fuel pins, and in terms of material, each assembly con-
tains 2 kgs or 0.25 SQ ( ) of Pu. A total goal amount ( ) of 1 
SQ or 8 Kg of Pu is chosen to be diverted by removing 4 
pins from 21 SFAs and 30 pins from 10 SFAs while the re-
maining  assemblies remain untouched.

Group1 Group2 Group3
Spent Fuel Assemblies 21 10 1969

Falsified Pins per Assembly 4 30 0

Total Material Diverted
(4*21 + 30*10 + 0*1969) 

*0.25/96 = 1 SQ

Table 2: Multi-Group Diversion Example Case Information

 
Out of 2000 SFAs, the inspector verifies n1 SFAs with the 
ICVD, n2 SFAs with the DCVD, and n3 SFAs with the PGET, 
where per verified SFA only one measurement instrument 
is applied. The instruments are the same as in the previous 
example. The only difference is the values of n1, n2, and n3 

are taken to be 59, 162 & 97 measurements, respectively. 
The identification probability functions, in this case, are as 
follows:

The overall DP for this example given in [7] is 0.91 

(9)

The stochastic approach using the same options as the 
previous example produced the estimate of 0.9157 with 
0.0019 as standard error, which agrees with the determin-
istic value of 0.9133. The residual between deterministic 
and stochastic DP estimates is 0.0024, which lies within 
limits defined by twice the stochastic standard error (± 
2*SE), i.e., ± 0.0038.

4.	 Conclusion 

The paper describes in detail the development of a sto-
chastic approach, in section 2, to compute detection prob-
ability for inspection problems at the stratum level. In sec-
tion 3, the stochastic approach is validated against two 
spent fuel inspection examples discussed in detail and 
treated deterministically in the published paper [7]. For the 
varying rpins example, the computed DP residuals (difference 
between deterministic and stochastic DPs) of all the points 
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lie within 3*SE limits depicted in Figure (8). For the multi-
group diversion example, the DP residual is 0.0024, which 
is within 2*SE limits. Thus, the stochastic results agree with 
the deterministic results. The main advantage of the sto-
chastic model over the deterministic models is its universal 
applicability to any inspection scenario at the stratum level 
(involves multi-defect stratum and multi-instrument scenari-
os), and the methodology remains the same making it a 
versatile tool. Currently, the stochastic approach can com-
pute DPs at the stratum level. Future work involves extend-
ing the approach to compute facility-level DP and then to 
the state-level DP concept.
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