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1. Introduction

Activities such as publishing nuclear research and expand-
ing scholarly networks include indicators of research influ-
ence – defined as the ability to have the greatest reach (or 
spread) in a scholarly network – and technology advance-
ments. These types of indicators, often buried in large vol-
umes of technical publication data, may reveal spatiotem-
poral patterns associated with a dynamic research 
collaboration landscape. Recent advances in data science 
methods and computational platforms, combined with nu-
clear domain knowledge, might provide the appropriate 
mix of analytic tools that can generate key research influ-
ence insights. While data-driven learning technologies are 
promising for analyzing patterns in large volumes of text, 
applying these methods to a research influence assess-
ment problem over time can be computationally challeng-
ing. Readily available open-source information on research 
collaborations, such as journal papers and technical re-
ports, can offer insights into an evolving nuclear research 
and technology domain. However, there is a need for net-
work-theoretic techniques to better exploit time-varying 
metadata from publications, including authorship, collabo-
ration, and topics of interest.

In this paper, a dynamic network analysis framework is pre-
sented for addressing the challenge of identifying key enti-
ties and capabilities in nuclear research networks. An entity 
may be broadly defined as an author, organization, or state. 
The focus here is on author-level collaboration networks 
based on open-source publication metadata over a 20-
year time period from 2000-2019. Research goals com-
prise of: (1) identifying key network influencers based on 
nuclear research topics, (2) comparing network topology-
based measures with information diffusion-based out-
comes over time, and (3) characterizing influential author 
collaboration dynamics, including persistence and emer-
gence of connections. Data-driven approaches implement-
ed to meet research goals include network construction, 
topic modeling, centrality analysis, information diffusion, in-
fluence maximization, and temporal dynamics analysis. A 
case study application is also presented. 

The remainder of this paper is organized as follows. We 
first present a brief background on network analysis of nu-
clear science literature. Thereafter, we describe the 
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framework for modeling state proliferation decisions using 
trade, conflict, alliance, and cooperative agreement net-
works. A policy-oriented aggregated proliferation metric 
over time was defined based on measures of centrality and 
correlation across network layers. 

Network analysis methods above typically rely on topology-
based measures of centrality over time to identify anoma-
lies and key researchers. However, research influence as-
sessment requires additional emphasis on the role of 
dynamics associated with these networks. Specifically, re-
search network dynamics in terms of context or topic-
based information diffusion and evolving collaboration be-
havior. This paper represents a step in that direction and 
presents network-based algorithms and insights from a 
case study application with focus on dynamic research 
network analysis.

3. Influential entity identification problem

Identifying influential entities of interest (i.e., author, organi-
zation, or state) as well as the evolution of their capabilities, 
in a computationally efficient manner, within a dynamic sci-
entific research network setting is a challenging problem. 
Temporal patterns in collaboration networks can contain 
significant information on sequencing of events and evolu-
tion of technology advances. Figure 1 presents a concep-
tual illustration of research network dynamics and the evo-
lution of influential authors. At a time t, nuclear technology 
capability of an entity of interest may be reflected via the 
prominence of authors within a nuclear research collabora-
tion network. On the other hand, the interest in pursuing re-
search and development on a particular topic most likely is 
motivated by the desire for advancing technology capabili-
ty. As illustrated here at time t +1, with an evolving research 
landscape, the technology capability of an entity might 
continue to grow as might be evident from increased num-
ber of prominent authors within a research network.

The focus of this study is on developing data-driven algo-
rithms and computational pipelines that may be useful for 
identifying potential influential entities and their capabilities 
over time. Using a global nuclear research collaboration 
network over a 20-year time period, three research ques-
tions were defined: (1) how to identify key network influenc-
ers based on evolving research topics over time? (2) how 
does network topology-based measures of centrality com-
pare against information diffusion dynamics-based out-
comes? and (3) how to characterize influential author col-
laboration dynamics ( in terms of persistence and 
emergence of connections)? A modular dynamic network 
analysis framework, developed to address these research 
questions, is described next.

influential entity identification problem. Next, a modular da-
ta-driven dynamic network analysis framework is presented 
including network construction, topic modeling, topic-
aware influence maximization, and temporal dynamics 
analysis. This is followed by a case study application. Final-
ly, concluding remarks and steps for future research are 
included.

2. Network analysis of nuclear science literature

Nuclear technology capability development and transfer 
can include physical items of trade as well as knowledge 
shared in scientific networks by researchers (Molas-Gallart, 
1997). Detecting early signs of proliferation activities, such 
as based on analysis of text-based data from scientific 
publications, may provide additional intervention options 
further “left of boom” (Sheffield, 2020). Analyzing scientific 
literature for evaluating a State’s nuclear activities also 
leads to diversification of information sources for compari-
son to generate safeguards conclusions (Feldman et al., 
2013). Further, the International Atomic Energy Agency 
(IAEA) Physical Model represents a consolidated frame-
work for data fusion and analysis that also includes areas 
of nuclear research and development (Liu & Morsy, 2007). 
As a result, analysis of research networks may be used to 
discover collaboration communities and influencers en-
gaged in nuclear fuel cycle related research and develop-
ment (Iancu, Wilson, Calle, & Gagne, 2018).

Network analysis and text mining techniques have been 
applied before to analyze scientific networks for nuclear ca-
pabilities assessment (Kas et al., 2012; Stewart et al., 2018; 
Diab et al., 2018; Iancu et al., 2018; Goldblum et al., 2019). 
Kas et al. (2012) developed a text-mining tool to construct a 
terminology thesaurus based on nuclear physics research 
with over 20,000 articles. This tool uses citation networks 
to identify key entities – individuals, organizations, and na-
tion states – engaged in nuclear research and topics of in-
terest by mapping key terms to capabilities. Weighted cita-
tion networks have also been studied in the biomedical 
domain under the assumption that all cited papers may not 
have equal influence on the publication of interest (Kim et 
al., 2018). Weights are typically based on topic similarity 
and relative importance of a paper in terms of content.

Stewart et al. (2018) describe a data collection, fusion, stor-
age, analysis, and visualization architecture using open-
source information for nonproliferation applications. Algo-
rithmic methods that were developed include natural 
language processing, knowledge and ontology-graph 
based approaches, link analysis, and geoparsing. Diab et 
al. (2018) describe a natural language processing approach 
for identifying key terms that distinguish uranium from other 
mining processes. Iancu et al. (2018) model publication co-
author relations, patent ownership, and organizational affili-
ation with a directed multigraph. More recently, Goldblum 
et al. (2019) describe a multiplex network science 
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capabilities over time. Computational costs associated with 
various algorithms were also taken into account and paral-
lel computing paradigms were implemented to accelerate 
simulation runs. 

Figure 2 presents our modular dynamic network analysis 
framework and computational engine. On the left, a step-
wise workflow begins from the top with data collection 
from Scopus scholarly publications on nuclear research fol-
lowed by author collaboration network construction. This is 
followed by topic analysis using metadata information such 
as title and abstract. The resulting network structures were 
thereafter subject to dynamic network analysis algorithms 
that led to characterization of key entities and capabilities 
over time. On the right, an overview of the computational 
engine for dynamic network analysis is described in greater 
detail with three connected modules: (1) topic-aware influ-
ence maximization, (2) information diffusion cascade, and 
(3) temporal dynamics analysis.

Methodological details under each of the framework ele-
ments in figure 2 including compute modules within dy-
namic network analysis are described in sections 4.1 to 
4.4. Section 4.1 describes network construction steps in-
cluding data collection and author collaboration network 
representation. Section 4.2 focuses on topic modeling 
based on the Non-negative Matrix Factorization (NMF) al-
gorithm. Next, in section 4.3, topic-aware influence maximi-
zation algorithm is discussed which is based on submodu-
lar optimization and information dif fusion cascade 
simulation. Finally, section 4.4 includes temporal dynamic 

4. Dynamic network analysis framework

Dynamic network analysis is a scientific area of study that 
fuses concepts from network science, graph theory, net-
work optimization, and stochastic simulation to character-
ize topology and dynamics associated with networked sys-
tems (Newman, 2018; Barabási, 2016; Carley, 2003). 
Mathematically, a network or graph may be defined as G = 
(V,E), where V is a set of vertices or nodes and E is a set of 
edges or links. A network with order n (i.e., number of 
nodes) is specified by the adjacency matrix, A, an n n 
square matrix where Aij indicates a link connecting node i 
and node j. Dimensions of temporal effects on networks 
may be broadly categorized through: (1) node addition/re-
moval, (2) link addition/removal, (3) dynamic flows across 
networks, and (4) node/link state transitions. Typically, 
graph analytic methods for influence and capability assess-
ment model individuals, organizations, or events as nodes, 
and the relations between nodes as different types of links. 
For example, collaboration networks represent authors as 
nodes and joint authorship on a manuscript as a link be-
tween two nodes. In this study, analytics from collaboration 
networks over time were generated to address the re-
search questions above associated with identifying key 
network influencers, comparing topology-based measures 
of centrality with diffusion dynamics-based outcomes, and 
influential author collaboration dynamics. Pairing of meth-
ods from network science, simulation, and optimization 
within a flexible computational environment was accom-
plished to generate insights about key entities and 

Figure 1: Conceptual Research Network Dynamics Illustration. Research network elements may evolve – grow, shrink, or remain 
consistent – over time. Nodes in a research network represent authors and edges represent collaboration among authors on a research 
paper. A node with dotted lines here represents an influential author. In this illustration, the number of influential authors in the network 
increases from 2 at time t to 4 at time t+1.
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nuclear reactor in the title, abstract and keyword list of 
each article record in Scopus. For example, the query used 
for finding the articles published in the year 2000 was 
specified as: "TITLE-ABS-KEY('nuclear PRE/0 fuel') OR TI-
TLE-ABS-KEY('nuclear PRE/0 energy') OR TITLE-ABS-
KEY('nuclear PRE/0 reactor') AND PUBYEAR IS 2000. The 
same query format is used for other years. The list, howev-
er, did not show one-to-one correspondence between 
each author and their affiliation; this information was ob-
tained from the full metadata information obtained using 
the Scopus API. Records from journals that published less 
than 10 nuclear-related articles in a year were not included 
in the final dataset. The final dataset contained a total of 
33,517 records (articles) in .json format. 

Within Scopus, each article has a unique numeric ID for 
each author. For the publications from the years 2000-2019 
used in this study, there were 64,312 authors from around 
the world. We observed that authors over time may change 
organizational affiliations or use different names (e.g., initials 
or full name) in their publications. As a result, an author may 
get assigned multiple numeric IDs. This may lead to addi-
tional nodes (representing author IDs) in the collaboration 
networks over time. We wrote Python scripts to check for 
cases where an author had multiple IDs but maintained a 
single affiliation--there were 393 (or 0.61% of 64,312) such 
instances among all authors over the 20-year time period in 

analysis based on network centrality measures. The over-
arching goal of this dynamic network analysis framework 
and computational engine was to generate insights on key 
entities and capabilities over time using network-theoretic, 
stochastic simulation, and optimization methods that ad-
dress variability in scholarly interactions, influence propaga-
tion, and author collaboration patterns.

4.1 Network construction

Steps involved in constructing global collaboration research 
networks are briefly described below.

4.1.1 Data collection

The data for constructing the global collaboration research 
networks was obtained from Scopus (Elsevier, 2021). We 
used the PyScopus Python package (Zuo, 2023) to search 
and obtain the Scopus identifiers (IDs) of nuclear related ar-
ticles, published in the years from 2000 to 2019, and then 
used the Scopus Application Programming Inferface (API) 
to directly search Scopus by the Scopus IDs to obtain full 
metadata information, particularly, author affiliations and 
abstracts. The list from pyscopus returned the Scopus ID, 
title, publication name, ISSN, volume, page range, date, 
doi, citation counts, publication type, author affiliations 
(name, city, country), author IDs, and full-text links (incom-
plete) of each article. The articles were identified by search-
ing for terms such as, nuclear fuel, nuclear energy, and 

Figure 2: Modular dynamic network analysis framework. Inputs, methodology, and outputs are linked through analytic information flow 
pipelines within and across computational modules described in sections 4.1 to 4.4.
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this study. In order to merge or split nodes, additional infor-
mation is needed that indicates whether an author used 
different forms of their name or whether two authors may 
have the exact same name along with affiliation. While ad-
ditional information related to possible author name resolu-
tion can refine our analysis further, it is a non-trivial problem 
to address for a global-scale network and was outside the 
scope of this study. Moreover, given the relatively small pro-
portion of instances (0.61%) in this study where an author 
had multiple IDs but maintained a single affiliation, we did 
not ar tif icially merge, split, or discard any author 
information.

4.1.2 Author collaboration network

The author collaboration network is a co-authorship based 
influence network, where a node represents an author 
(identified by author id) and an edge represents co-author-
ship between two authors if they had co-authored at least 
one article. Figure 3 presents author collaboration network 
elements and an illustration of network construction when 
multiple authors collaborate on the same article. The net-
work was constructed using the NetworkX Python pack-
age (Schult and Swart, 2008). From each record (.json file), 
we extracted the author names and ids; as well as their in-
stitution name, city, and country from their respective affili-
ations. To quantify the strength or closeness of each pair of 
co-authors, we calculated Newman-Fowler (NF) weights 
(Fowler, 2006; Perianes-Rodriguez et l., 2016) using the 
formula:

       

where aq = 1, if i and j are co-authors of the same publica-
tion p, and 0 otherwise; nq is the number of authors of pub-
lication q. The –1 in the denominator nq – 1 is used to ig-
nore self-links. The NF weights were inverted and assigned 
as edge weights in the graph, so that edge weights can be 
interpreted as cost or distance between two co-authors for 
centrality analysis.

Figure 3: Author collaboration network elements. In this illustration, 
all authors i,j, and k (nodes) collaborate on the same article aijk , 
and inverted Newman-Fowler weights, w* represent collaboration 
strength along edges.

 
Since we are interested in finding authors with maximum 
influence, we only consider the Giant Connected Compo-
nent (GCC) of the network for the influence analysis. The 
GCC is defined as a sub-network that is the largest con-
nected collection of nodes from the original network (Kitsak 
et al., 2018), and was determined using the connected_
components function from NetworkX. Although it may be 
possible that influential authors are present outside of a 
network’s GCC, that possibility was not considered for this 
analysis. Before creating the GCC, we removed densely 
and weakly connected components of the network by re-
moving edges with weights above a threshold value of 20, 
which corresponds to an edge representing one paper co-
authored by 21 authors. Papers co-authored by many au-
thors will appear as densely connected networks in the au-
thor collaboration graph. These networks may represent 
relatively weak collaborations and can end up being select-
ed in the GCC. Papers with more than 100 co-authors are 
also present in our dataset. Therefore, we applied the crite-
rion to remove such densely and weakly connected com-
ponents by removing edges with weights above a thresh-
old value. 

4.2 Topic modeling

Topic modeling was performed using state-of-the-art NMF 
algorithm (Kuang et al., 2015). NMF is a linear algebra 
based dimension reduction algorithm where the input is a 
normalized term frequency-inverse document frequency 
(TF-IDF) matrix and the outputs are two non-negative ma-
trices representing words by topics and topics by docu-
ments.  We used the NMF outcomes for subsequent influ-
ence maximization analysis.

We implemented the NMF algorithm using the Scikit-learn 
Python package (Pedregosa et al., 2011). The title and ab-
stract of each record were combined and used as the text 
for the topic modeling. The NMF model was fitted with a 
maximum of 1,000 features extracted from the text of 
33,517 records. Common English stop words and corpus-
specific words occurring in the text from only one or two 
records or from at least 95% of the 33,517 records were re-
moved during feature extraction. The features for the NMF 
model were extracted using TfidfVectorizer function in the 
Scikit-learn package. A total of ten topic categories (or top-
ics) were obtained. The number of topics (categories) was 
set to ten, which we found to meaningfully classify the re-
cords with minimal overlap. The weights of the ten topics 
discovered by the NMF model were fitted using sklearn.de-
composition. The NMF module with Frobenius norm mini-
mization and regularization, where the L1 to L2 ratio was 
set at 0.5, and alpha, the constant multiplying the regulari-
zation terms, was set at 0.1, to avoid overfitting.

Each topic is a group of keywords (features), where each 
keyword contributes a certain weight to the topic. The top 
10 words in each topic were used to analyze the meaning 
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The influence maximization method (Kempe et al., 2003) 
uses an information diffusion model to identify the key au-
thors that have the potential to cause maximal spread of in-
formation on a network based on activation probability at 
an edge. We consider the Independent Cascade (IC) ap-
proach (Kempe et al., 2003) as the information diffusion 
model in this study. Figure 4 illustrates this process of infor-
mation diffusion cascade and the feedback with influence 
maximization. Mathematically, the influence maximization 
problem can be defined as follows. Consider a graph G = 
(V, E) that abstracts a complex network, where V is the set 
of nodes V and E is the set of edges . 
There are three types of nodes: (1) active - refers to an au-
thor who is influenced in the current step in an iteration 
path, (2) inactive - refers to an author who was active be-
fore and cannot influence others in subsequent time steps 
in an iteration path, and (3) available - refers to an author 
who can be influenced in the next step in an iteration path. 
The edge  implies that u can influence v. Additional 
simulation conditions are posed by the choice of diffusion 
model. For instance, in the IC-based diffusion model, an 
activated node u has a single chance to activate its availa-
ble neighboring node v with an activation probability of puv. 
Given the possibility of initially activating k nodes, the 

of the topic. The model outputs were the weight distribu-
tions of the ten topics for each record. These weights were 
normalized using the formula, , where  is weight 
of topic  for a record. The topic with the highest normalized 
weight was treated as the dominant topic for that record.

4.3 Topic-aware influence maximization

The topic-aware influence maximization method (Chen et 
al., 2015) was applied to identify the top 5 authors who can 
influence the information diffusion of a topic mixture in a 
network. The topic mixture is defined as a vector, 

, where  indicates whether topic  is to 
be included (  = 1) or excluded (  =  0) in the activation 
probability calculations. For example,  
represents a mixture of topics 1, 5, 7, and 9.  Figure 5 illus-
trates the steps in our research topic-based estimation of 
activation probabilities for the influence analysis. The acti-
vation probability along each edge in the network was 
computed by taking the dot product of the topic mixture 
vector and NMF topic weight vector obtained by averaging 
the topic weights of the co-authored papers along the 
edge followed by normalization.

Figure 4: Information diffusion cascade and influence maximization process. In this illustration, a cascade iteration represents a simulation 
instantiation where an initial set of active nodes result in network impact. Simulation outcomes inform the influence maximization leading 
to identification of influential nodes, and candidate seed set samples are sent back to the simulation engine via a feedback loop.
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obtained from the topic modeling results. Starting with col-
lection of co-authored or cited papers corresponding to 
edges in the network, topic modeling led to a distribution of 
topic weights per paper. These topic weights were aver-
aged and normalized over the collection, and aggregated 
topic mixture weights were computed to serve as activation 
probabilities in the scientific network.

4.4 Temporal dynamics analysis

Analyzing temporal dynamics over scientific networks in-
volves exploring multiple dimensions of information ex-
change. Below are brief descriptions of the methods imple-
mented to characterize such temporal behaviors.

4.4.1 Collaboration dynamics

The collaboration dynamics of the influencers can be char-
acterized by analyzing their ability to form new collabora-
tions (i.e., emergence) and to maintain old collaborations 
(i.e., persistence) in time. Mathematically, the number of 
new collaborations in a given year was estimated by com-
puting the difference in the set of collaborators in that year 
and the aggregated set of collaborators in prior years. The 
number of old collaborations in a given year was estimated 
by computing the intersection of the set of collaborators in 
that year and the aggregated set of collaborators in prior 
years.

4.4.2 Centrality dynamics

Centrality dynamics of the influencers was characterized by 
first computing the topology-based degree and between-
ness measures of centrality of influencers in the collabora-
tion network of each year (Barabási, 2012). The change in 
the centrality measures over time indicates the evolution of 
key influencers based on topology. The centrality measures 
(degree and betweenness) were calculated using the Py-
thon library NetworkX (Schult and Swart, 2008). Degree 
centrality indicates who is well-connected (popular) based 
on the number of connecting edges. Betweenness central-
ity indicates who controls information flow (or acts as a 
bridge) between two authors based on how often a node 
appears on the shortest paths between all other nodes in 
the network. The edge weights (as defined in the network 
construction section above) were used in the betweenness 
centrality calculations.

5. Case study

The case study application addresses the overarching re-
search goals of identifying key influencers, comparing net-
work measures of centrality with information diffusion-
based outcomes, and characterizing collaboration 
dynamics. The results and discussion support the dynamic 
network analysis framework and computational engine de-
scribed in Figure 2.

influence maximization problem aims to find a set of k seed 
nodes called the seed set S, that when activated result in 
maximal activations on the network among all possible 
such sets of k nodes. The seed size (k) for all the simulation 
runs was set at 5 (i.e., to identify top 5 influencers), and the 
number of iterations (n) for each IC simulation was set at 
10,000. The IC model is a stochastic simulation where the 
node activation is a random process and the expected 
cascade size is a random variable. Multiple iterations of the 
IC are required to obtain the largest expected cascade 
size. In our simulations, we determine the authors with the 
largest expected cascade sizes as the top influencers. The 
IC simulation-based optimization converges resulting in a 
stable list of top k authors.

The influence maximization computation was performed 
using a Message Passing Interface (MPI) Python imple-
mentation with parallel computing of the ordinary greedy 
algorithm (Kempe et al., 2003) using the mpi4py Python 
package (Dalcin et al., 2005). A Monte Carlo loop was im-
plemented for 10,000 iterations to compute the expected 
spread in activations. A key input in the information cas-
cade and influence maximization process described above 
is the characterization of activation probability (p) that mod-
els the likelihood of information flow across networked enti-
ties. Figure 5 illustrates the steps in our research topic-
based estimation of activation probabilities for use in 
influence analysis. The activation probability for a given top-
ic mixture of an author to activate another author was com-
puted using the weight distribution of the NMF topics 

Figure 5: Algorithm for activation probability calculation in author 
collaboration network.
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5.1 Author collaboration data

The author collaboration networks were created based on 
33,517 records. Table 1 presents the number of nodes and 
edges from the overall author collaboration network over 
time before and after removing edges based on the NF 
weight criterion. The year 2018 had the largest network, 
with 10,353 nodes and 784,580 edges. After removing 
edges with NF weights below 0.05, the number of edges 
reduced from 784,580 to 26,165. By counting the number 
of authors affiliated with each country in a year, and aver-
aging the count over the 20-year period, we can find that 

the highest average number of authors were from China, 
followed by United States, Japan, and Russia. Figure 6 de-
picts how the number of authors changed over a period of 
20 years for the top ten countries that had the highest aver-
age number of authors. The figure indicates that there has 
been a drastic increase in the number of authors from Chi-
na after 2011.

The GCC networks from the author collaboration networks 
were computed after removing edges with zero activation 
probabilities.  We observe that in several cases the size of 
GCC author collaboration networks is roughly an order of 
magnitude less than the original networks, thereby contrib-
uting to higher computational efficiency while capturing sig-
nificant network connectivity.

5.2 Topic modeling

Figure 7 presents ten topics identified by the NMF model 
with distinct keywords for each topic along with normalized 
weight contributions of the top ten keywords in each topic. 
Each topic is labeled by a topic index number from 1 to 10. 
In each topic, the top two to three keywords are highly 
weighted compared to the other keywords; which, sug-
gests that the model is able to identify distinct keywords 
that capture the overall meaning of each topic. Specifically, 
the authors’ interpretations of the topics based on the key-
words were:

Whole network GCC network
Year Nodes Edges Edges (NF wt > 0.05) Number of components Nodes Edges
2000 3022 67361 5303 1136 42 116

2001 3462 26920 8443 1247 139 606

2002 3522 17219 7553 1091 110 438

2003 3505 27948 8636 1159 56 167

2004 4654 14195 12152 1209 159 573

2005 4866 24636 12921 1383 282 1457

2006 6487 431823 12668 3002 99 504

2007 5731 34945 15789 1644 617 3488

2008 6021 24681 14394 1566 131 525

2009 5890 25055 15423 1417 86 291

2010 6415 31206 16608 1666 111 538

2011 5540 32185 14635 1429 150 836

2012 5171 14128 13597 1105 223 914

2013 6296 28237 17586 1441 177 824

2014 6727 36303 19687 1426 952 4753

2015 7472 62235 20690 1789 276 1151

2016 8285 93836 22426 1998 419 1728

2017 8032 74851 23255 2047 351 1294

2018 10353 784580 26165 2747 934 3526

2019 8289 30427 23218 1523 891 3629

Table 1: Number of nodes and edges in the author collaboration networks.

Figure 6: Top ten countries with the highest number of authors 
from 2000 to 2019.
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Topic 1: Modeling and data analysis;

Topic 2: Nuclear energy production;

Topic 3: Spent uranium in the nuclear fuel cycle;

Topic 4: Neutron flux in nuclear reactors;  

Topic 5: M aterial irradiation at high temperatures;

Topic 6: Radioactive waste management;

Topic 7: Reactor control in nuclear power plants,

Topic 8:  Nuclear fusion and ITER (International Thermonu-
clear Experimental Reactor);

Topic 9: Heat flow in nuclear reactors; and 

Topic 10: Radiation dose from nuclear accidents.

The word “nuclear” appears in topics 2, 6, and 7, indicating 
that it was not ignored during the feature extraction and 
more than 5% of the records do not have the word “nucle-
ar” in their titles and abstracts. These are the records 
where one or more of the query phrases (nuclear fuel, 

nuclear energy, or nuclear reactor) occurred only in the 
keyword list and not in the title and the abstract used for 
the topic analysis. Although the NMF topics have unique 
meanings, it is typical for a record to belong to multiple top-
ics with varying weights. Figure 8 shows an example where 
all the topics contribute a non-zero weight to a record, with 
the highest-weighted topic being topic 6. In this study, the 
topic with the highest weight is considered the dominant 
topic for a particular record. Per figure 9, topics 1, 5, 7, and 
9 were the top four dominant topics among all records in 
the most recent years from 2016-2019. In addition, these 
were also the top four dominant topics based on cumula-
tive number of records from 2000-2019 (see Table 2). In 
this study, these top four prevalent dominant topics were 
selected as the topic mixture for information diffusion as 
part of topic-aware influence maximization analysis.

Figure 7: Normalized weight distribution of the top 10 keywords of each NMF topic.
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Figure 8: An example showing the non-zero normalized weights of 
each NMF topic of a record.

 

Figure 9: Number of records published every year on each 
dominant NMF topic. Highlighted topics were the top four 
dominant topics in the most recent years.

Dominant NMF 
Topic

Cumulative Number of 
Records from 2000-2019

Topic 1 4689

Topic 2 2399

Topic 3 3795

Topic 4 2669

Topic 5 4666

Topic 6 1789

Topic 7 4502

Topic 8 1871

Topic 9 3956

Table 2: Cumulative number of records for each dominant NMF 
topic from 2000-2019. Top four dominant topics and correspond-
ing cumulative number of records are highlighted.

5.3 Influence analysis with collaboration network

As described in the topic-aware influence maximization 
section, activation probabilities for influence analysis may 
be computed using a mixture of NMF topic weights yielding 
different results from the topic-aware influence maximiza-
tion (TAIM). In this case study, we present TAIM results to 
identify key influencers over time using an NMF topic mix-
ture. Specifically, we use TAIM to identify the top 5 authors 
who can influence the diffusion of information pertaining to 
a mixture of the top four dominant NMF topics (see figure 9 
and table 2). These topics are modeling and data analysis 
(topic 1), material irradiation at high temperatures (topic 5), 
reactor control in nuclear power plants (topic 7), and heat 
flow in nuclear reactors (topic 9).

5.3.1 TAIM analysis on author collaboration networks

The TAIM analysis was applied to identify the top 5 influ-
encers in the collaboration network from each year. The 
computations were performed using a parallelized (MPI) 
version of the TAIM algorithm. For example, a single TAIM 
simulation run with GCC of a network with 952 nodes and 
4,753 edges using our optimized algorithm converged in 
about 6 hours using 32 processors; without MPI, the pro-
cessing time for this run was about 30 times slower or 
about 7 days. The computational acceleration allowed us 
to run the TAIM algorithm on large graphs (e.g., 5,000+ 
nodes and 28,000+ edges) and complete all simulation 
runs in the order of a few days. Figure 10 shows the top 5 
influencers for the years 2000 and 2019. The top influencer 
in 2000 was from Netherlands, followed by Japan, France, 
Russia Federation, and Japan again. The top influencer in 
2019 was from United States, followed by two from China, 
and one each from Poland and Italy. Similar analysis was 
applied on collaboration graphs for years 2001 to 2018 (re-
sults not shown here). The change in the top influencers 
from year to year is indicative of the network dynamics.

The primary advantage of the TAIM analysis is that it helps 
to identify the top influencers who can diffuse information 
about the selected topic mixture through their high-spread 
influence network (collaborators), more efficiently than oth-
ers. Whether or not they leveraged their positions as top in-
fluencers is subject for further investigation. Particularly, it is 
beneficial to discover if any of the influencers have used 
their high influence spread in a network to gain new collab-
orations and prominence in a research area. If they have, 
then it would be important to analyze the collaboration and 
publication dynamics to determine whether their positions 
as the top influencers in a particular year affect or was af-
fected by their collaborations, publication track records, 
and research impact in past and future years. At the same 
time, we observe that the influencers may not spread their 
influence if they or members of their high-spread influence 
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network are not actively collaborating or publishing for a 
long time period.

Among the 99 unique influencers that were identified from 
2000 to 2019 (one author was a two-time top 5 influencer), 
54 actively published papers for only less than 5 years, 26 
were active for 5 to 9 years, 15 were active for 10 to 14 
years, and the remaining 4 were active for at least 15 years. 
Thus, not all influencers from a given year actively 

published in subsequent years. This may be due to possi-
ble factors such as nature and duration of the research, 
transition of collaborators, or evolving research interests. 
Influence analysis provides a way to track the collaboration 
and publication dynamics of influencers pertaining to any 
topic mixture over a period of time. Furthermore, the ability 
to generate and monitor scholary influence dynamics may 
possibly contribute to identifying technology advances and 
readiness.

Figure 10: GCC of the author collaboration network, showing the top 5 influencers from years 2000 and 2019 for a mixture of dominant 
NMF topics 1, 5, 7, and 9. Author IDs have been masked for privacy, node size indicates influence, and node color indicates authors.
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Figure 11 shows the collaboration dynamics of the four in-
fluencers who published papers for at least 15 years. Two 
of them were among the top 5 influencers in year 2000, 
one was from 2007, and the other from 2016. Figure 11a 
presents the rate at which each influencer formed new col-
laborations over time. While all the influencers have been 
actively making new collaborations over time, we observe 
that they exhibit different collaboration signatures over time. 

5.3.2 Collaboration dynamics of influential authors

The collaboration dynamics of the influencers from 2000 to 
2019 were analyzed based on their persistence to maintain 
old collaborations and the emergence of connections 
through their ability to form new collaborations. The new 
collaborators in a given year were those the influencer did 
not co-author a paper within the years prior to that year. 

Figure 11: New and old collaborations of influential authors who published papers in at least 15 years between 2000 and 2019. Author 
IDs are masked for privacy.
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contributed to the sudden gain (or even decline) in the 
number of new collaborations, the analytic insights can be 
used to characterize the growth rate of new collaborations 
for each author. The old collaboration dynamics in figure 
11b indicate that the same influencers continued to main-
tain about two to five of their old collaborations. The influ-
encer from 2007 (author 3 in figure 11b) in fact shows a 
strong collaborative behavior with their old collaborators. 
This might suggest continuing collaborations with known 
researchers from established areas of expertise and prior 
history of teaming together.

5.3.3 Centrality analysis of author collaboration networks

Network centrality measures (e.g., degree and between-
ness) are commonly used topology-based outcomes to 
identify authors who are well connected and may control 
the flow of information in a network. It is interesting to ana-
lyze if the top influencers from TAIM analysis (including in-
formation diffusion-based outcomes) also have high degree 
or betweenness centrality values over time. Figure 12 pre-
sents the centrality values over time for the 19 influencers 
who published for at least 10 years. Three influencers, each 
from 2000, 2004, and 2014, have high degree centralities in 
the year 2014 (see figure 12a), which are indicative of their 
high number of collaborations. Two influencers, one from 
2000 and another from 2003, also ranked among the top 
for the highest betweenness centrality (see figure 12b). 
Since high centrality values over time for influencers are not 
consistently observed from the heatmap, authors with 
high-influence spread are not necessarily also the ones 
with high centrality values. These results signify that a di-
rect correspondence between rankings based on centrality 
measures and influence spread may not occur since the 
centrality analysis does not take into account topic aware-
ness and information diffusion. Thus, the TAIM analysis 
provides novel information that centrality analyses do not 
provide, which can be valuable for understanding technolo-
gy advances.

5.4 Discussion

The range of representative analytic outcomes presented in 
the case study provide insights from global nuclear re-
search collaboration networks that could support influence 
and capability assessment. These insights are based on 
modeling and simulation assumptions as well as conditions 
described under section on dynamic network analysis 
framework. In light of the overarching challenge problem of 
identifying key entities and their capabilities over time for in-
fluence and capability assessment, four main takeaways 
from the case study are summarized below:

• Author collaboration networks represent different forms 
of influence that may lead to varied scholarly research 
publication patterns in support of technology advance-
ments over time. Collaboration is more direct and indi-
cate evolution of connections in the form of disaggregat-

From the results presented, it can be understood that it is 
important for an influencer to work with new collaborators 
to maintain or increase research productivity and influence. 
For example, the top influencer from 2000 (author 1 in fig-
ure 11) gained 25 new collaborations in the year 2014. Such 
an influencer could have suddenly gained new collabora-
tions due to contributions on a project with large number of 
new team members or based on new and multiple pro-
jects, or possibly even new leadership positions over multi-
ple projects. Regardless of the factors that might have 

Figure 12: Heat map showing the centrality values of influencers 
who published at least for 10 years from 2000 to 2019. Centrality 
values are normalized by the maximum value in a given year. 
Author IDs are masked by their 3-letter country codes and count 
index.
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ed networks over time. The GCC of these networks may 
serve as a computationally efficient reduced order repre-
sentation while preserving significant network connectivi-
ty properties.

• Within the dynamic network analysis framework and 
computational engine, additional mixed-topic research 
areas can also be defined by subject matter experts. 
NMF based topic modeling algorithm may still serve as 
useful prior information.

• TAIM accounts for complex topologies and information 
cascade dynamics simultaneously to identify and rank 
key influencers by country over time, using topic mixture 
weights as inputs for computing activation probabilities of 
influence among authors. This represents an advance in 
the state-of-the-art of network analysis with nuclear sci-
ence literature. Parallelized implementation of the TAIM 
algorithm led to up to 30 times faster compute times in 
some cases. These key influencers, identified via sto-
chastic simulation-based network optimization, may pos-
sess the ability to diffuse information over a network 
more efficiently than others, and might include authors 
who are not necessarily those with high values of topo-
logical measures of centrality. This is important because 
using just topology-based measures may miss other in-
fluential authors and their collaborators.

• Even among influential authors there is variability in the 
way they form collaborations over time. Some influencers 
may choose to continue partnerships with their old col-
laborators exhibiting persistence of connections, while 
others may choose to continually seek new collaborators 
to pursue research goals exhibiting emergence. These 
collaboration signatures may reveal patterns of scholarly 
behavior that might help in a more robust assessment of 
technology advancements and capabilities.

6. Conclusion

The novel data-driven dynamic network analysis framework 
and computational engine developed in this paper is com-
prised of three connected computational modules: (1) top-
ic-aware influence maximization, (2) information diffusion 
cascade, and (3) temporal dynamics analysis. Network the-
oretic, stochastic simulation, and optimization methods 
were leveraged to identify key entities and capabilities over 
time within global scholarly nuclear science research col-
laboration networks. The analytic insights associated with 
variability in scholarly interactions, influence propagation, 
and collaboration patterns over time via network connec-
tions can be useful for assessing technology advance-
ments and capabilities. The main element of the dynamic 
network analysis engine is a topic-aware influence maximi-
zation algorithm that enables identification and ranking of 
key authors who have the potential to influence the spread 
of information in networks over time. A critical insight from 
our case study is that influential authors may have unique 
collaboration behaviors and may or may not exhibit high 

values of topological measures of centrality. As a result, us-
ing just topology-based measures may not lead to a com-
prehensive assessment of the nuclear research landscape 
and technology advancements. 

The results described using author collaboration networks 
represent analytic examples to illustrate the value of our dy-
namic network analysis engine for assessing research influ-
ence and technology advancements. Further work may in-
clude analysis of authors who collaborate with influencers 
and their evolution as potential influencers in the future. Fu-
ture research may further involve expansion of information 
sources to include other data types such as corporate, 
trade, patent, and professional affiliation network activities 
over time to yield even more comprehensive understanding 
of key entities and capabilities over time. Further research 
may also include multi-layer network representations with 
corresponding topology and dynamics to capture impor-
tance and influence across network layers; as well as trans-
former-based topic analysis along with the use of graph 
representation learning for characterizing uncertainty (due 
to missing or unobserved information) in research connec-
tions. In summary, identifying influential authors can enable 
estimation of research trajectories in a country, and possi-
bly in collaborating countries over time. Such information 
can be vital for detecting early signs of proliferation activi-
ties and generating safeguards conclusions.
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