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• Reviewing surveillance camera data for specific ob-
jects or patterns of life (Smith, Hamel, Hannasch, 
Thomas, & Gaiten-Cardenas, 2021) (Thomas, et al., 
2021) (Wolfart, Casado Coscolla, & Sequeira, 2022). 

• Supporting inspector indoor localization at complex 
nuclear facilities (Wolfart, Sanchez-Belenguer, & Se-
queira, Deep Learning for Nuclear Safeguards, 2021).

• Supporting inspectors with digital assistants for visual 
tasks (Smartt, Gastelum, Rutkowski, Peter-Stein, & 
Shoman, 2021). 

Despite this surge in research, access to sufficiently large, 
relevant datasets remains a challenge. Relevant data for in-
ternational safeguards research and development are rare 
for multiple reasons. First, real international safeguards data 
are sensitive and held in confidence by the IAEA and are 
therefore inaccessible for most research. Second, safe-
guards-relevant data may be either commercially sensitive 
or have national security sensitivities for states. Third, rele-
vant data may be lost to history due to obsolete file for-
mats, data corruption, or lack of digitization. Finally, rele-
vant data might not exist; for example, images of 
technologies that are physically feasible but not widely 
adopted may be of interest to detect future proliferation ac-
tivities, but images of these technologies are non-existent. 

In response to the rarity of available safeguards data, we 
have created a large, open-source, safeguards-relevant im-
agery dataset called Limbo. Limbo contains one million 
synthetic (computer-generated) images intended for com-
puter vision research and development. The images in-
clude detailed, automatically-generated segmentation 
mask, contour, and bounding box annotations, see Figures 
8 – 10 for examples. We also provide a small collection of 
annotated real-world images for validation that include well-
documented copyright information to simplify publication. 
Our goal for the Limbo data, and for synthetic data more 
broadly, is to develop computer vision models trained sole-
ly on synthetic data that can achieve state-of-the-art per-
formance when evaluated on real-world data. 

We applied several criteria in selecting a subject matter for 
our synthetic data. We wanted the subject to be:
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1. Introduction

The International Atomic Energy Agency (IAEA) operates 
under the United Nations and is responsible for verifying 
that nuclear materials and facilities across the globe are 
limited to peaceful use. They do so by implementing and 
monitoring international nuclear safeguards: measures to 
account for nuclear materials and verify the design and op-
eration of nuclear facilities. Increasing interest in nuclear 
energy technologies, growing inventories of nuclear materi-
al, and limited IAEA safeguards resources are compelling 
the IAEA to be more efficient in safeguards monitoring. 

Computer vision models could increase IAEA safeguards ef-
ficiency, by augmenting visual tasks conducted as part of the 
IAEA’s safeguards mission. Examples of visual tasks for 
which computer vision research and development is current-
ly underway throughout the safeguards community include:

• Object and change detection for nuclear-relevant sites 
via satellite imagery analysis (Rutkowski, Canty, & 
Nielsen, 2018).

• Collection, triage, and information recall for open-
source images (Feldman, Arno, Carrano, Ng, & Chen, 
2018) (Gastelum & Shead, 2018) (Arno, 2018). 
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2. Data Generation

In this section, we describe our workflow to generate syn-
thetic images. This process includes the creation of three-
dimensional (3D) models of UF6 containers, random sam-
pling of 3D model parameters, and placement in real or 
virtual environments, followed by rendering to produce 2D 
images and metadata. 

2.1 Developing 3D Models

We developed 3D models of our UF6 containers using 
SideFX Houdini (https://www.sidefx.com/products/houdi-
ni/), a procedural 3D modeling and animation tool widely 
used in films, television, and game design. A screenshot of 
the Houdini workspace with a parameterized 30B container 
model is provided in Figure 3. The 3D models were in-
formed by technical standards and specifications pub-
lished in open sources by industry partners and profes-
sional societies, with some subjective adjustments to better 
match the containers in real-world images. Sources that 
were especially useful for our model development 
included:

• Unclassified, for easier development and dissemination 
of the data.

• Visually distinct, to facilitate labeling of real-world vali-
dation data.

• Relatively common, to ensure that we would have suffi-
cient real-world data to support our validation 
activities. 

• Prevalent within the nuclear fuel cycle, so the generat-
ed data could support the broadest possible research 
and development, without being tied to a single pro-
cess or type of facility.1

Based on these criteria, we opted to generate images of 
containers used to store and transport uranium hexafluor-
ide (UF6) throughout the commercial nuclear fuel cycle. We 
specifically focused on two general models of UF6 contain-
ers: 30B and 48-type containers. 

30B containers are 30-inch cylinders used to transport ura-
nium-235 enriched up to 5%. These containers are primari-
ly found at uranium enrichment facilities (as the product 
output) and fuel fabrication plants (as the product input). 
See Figure 1 for a real-world example. 

48-type containers refer to a class of 48-inch containers 
used to store and transport natural and depleted UF6. We 
included three common designs of 48s: 48X and 48Y con-
tainers are used for storage and transportation, while 48G 
containers are characterized by the lack of an apron and 
are used exclusively for storage. 48-type containers can be 
found at uranium conversion plants (as the product output), 
uranium enrichment plants (as the input, and to store de-
pleted tails), and fuel fabrication facilities (as input for natu-
ral uranium fuel). See Figure 2 for a real-world example of 
48Y containers. 

In addition to relevant containers, the Limbo data includes 
examples (both real and synthetic) of distractor objects in-
cluding propane tanks, gas canisters, beer kegs, 55-gallon 
drums, and more. Synthetic distractors have the full meta-
data suite, while real-world distractor metadata includes 
only the class “distractor”. 

In the remainder of this paper, we describe the data gener-
ation process (Section 2), validation workflow (Section 3), 
data validation experiments and results (Section 4), and 
discussion and implications for future research (Section 5). 
We also provide information on how to access and use the 
Limbo data, and descriptions of the Limbo dataset con-
tents (Section 6).

1  Through a collaboration with researchers at Lawrence Livermore National Labo-
ratory, we had access to a set of images collected from open sources that pro-
vided an indication of overall prevalence in open sources and served as a seed 
for additional data collection.

Figure 1: 30B uranium hexafluoride container at the IAEA Low 
Enriched Uranium Bank in Kazakhstan. Credit: IAEA, 2019.

Figure 2: 48Y containers at Urenco, Netherlands. Credit: IAEA, 
2015.
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industrial scenes similar to environments where real 30B 
and 48 containers would be found, but we also included 
several studio and other scenes for variety. Several exam-
ples of our HDR backgrounds are shown in Figure 4 (the 
images are warped by the panoramic perspective but dis-
play normally when projected into the final 2D rendered 
images). 

A limitation of using real images as backgrounds is that the 
scale and perspective of the background may not match 
the 3D objects in the foreground. This can lead to cylinders 
that seem unusually large or small, relative to their sur-
roundings, or appear to be floating in air instead of properly 
grounded.  Although ultra-realistic synthetic images are not 
necessarily required for robust model training (Tremblay, et 
al., 2018), we addressed this by providing a fully synthetic 
3D environment in later Limbo images, based on an out-
door scene of an oil refinery. The 3D oil refinery provided a 
large and diverse setting for our containers, had industrial 
features similar to a nuclear fuel cycle facility, and guaran-
teed that 3D foreground objects perfectly matched the 
background in proportions and perspective.

We inserted skies from the real-world HDR images into the 
synthetic oil refinery for additional control and manipulation 
of lighting. A scene from the refinery is shown in Figure 5. 

• Uranium Hexafluoride: A Manual of Good Handling 
Practices (United States Enrichment Corporation, 
1995); 

• American National Standard for Nuclear Materials - 
Uranium Hexafluoride – Packaging for Transport 
(American Nuclear Standards Institute, 2001); and

• Uranium Hexafluoride: Handling Procedures and Con-
tainer Descriptions (Oak Ridge Operations, 1987).

Once the cylinder models were created in Houdini, we 
used the Allegorithmic (now Adobe) Substance 3D paint 
software to generate multiple sets of “paint job” textures for 
the cylinders in varying styles and levels of wear. 

In addition to the cylinders, Limbo also includes a variety of 
distractor objects. Unlike the UF6 containers, the distrac-
tors are common objects not specific to the nuclear fuel cy-
cle (such as propane tanks, welding gas cylinders, wine 
barrels, etc.) that are widely available commercially. There-
fore, for the distractor objects we procured 3D models from 
an online 3D model marketplace (https://turbosquid.com) 
with appropriate permissions for use and distribution.

2.2 Model Placement and Environment

As backgrounds for our 3D container models, we provided 
two major classes of environment: real-world and 
synthetic. 

Real-world environments were created using panoramic 
High Dynamic Range (HDR) photographs, which capture a 
360-degree image of a scene, and—unlike normal photo-
graphs—use special techniques to record the full range of 
light intensity for each pixel. In this way, an HDR image 
samples light intensity from all directions simultaneously. 
This makes it possible for an HDR image to provide the 
photographic backdrop for a scene while also supplying re-
alistic, nuanced lighting. We used HDR images collected 
from open sources with appropriate permissions, including 
indoor and outdoor scenes. A majority of the images were 

Figure 3: 3D CAD model of a 30B UF6 container in the Houdini 
software.

Figure 4: Sample indoor and outdoor HDR environments.

Figure 5: Synthetic 3D oil refinery environment.
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The refinery scene was procured from the same online 3D 
model marketplace as our distractor objects.

For both HDR and synthetic 3D environments, we used 
Houdini to assemble complete scenes via random sam-
pling of parameters such as the number, type, organization 
(scattered versus rows) and placement of containers within 
the environment; camera location, orientation, and lens; en-
vironmental lighting conditions; container material appear-
ance; container condition (new, scratched, rusty, etc.); and 
type of cradles (wood, concrete) used to support the 
containers.

2.3 Rendering and Metadata

Once the individual 3D scenes were assembled, we used 
Redshift 3D - a GPU-accelerated, biased render engine im-
plementing a physically based rendering (PBR) lighting 
model – to render 2D images. Importantly, each of our 2D 
images comprises several layers and multiple files created 
explicitly with the needs of computer vison research in 
mind. Each of our images includes the following:

1.  A 720 by 720-pixel HDR visible spectrum image  
(Figure 6).

2.  A corresponding depth map image, where the value of 
each pixel is its distance from the camera. This data can 
be used by researchers interested in training models on 
light detection and ranging (LiDAR) information (Figure 7).

3.  Sub-pixel occupancy data for every object in the image 
(Figure 8). Storing the per-pixel areas occupied by multi-
ple objects allows us to generate a variety of perfect 
ground truth information, including per-instance and per-
class segmentation masks, contours (Figure 9), bound-
ing boxes (Figure 10), and tags for image classification. 
Sub-pixel occupancy data is stored in compressed form 
using the efficient and elegant Cryptomatte file format 
(Friedman & Jones, 2021). 

Figure 6: Examples of synthetic 30B containers in a variety of 
real-world HDR environments.

Figure 7: Depth map image suitable for use as LIDAR ground 
truth.

Figure 8: Segmentation masks derived from per-instance 
occupancy data.

Figure 9: Object contours for scene objects. 

Figure 10: Bounding boxes derived from per-instance masks.
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3.1 Training Models on Synthetic Data

Our primary goal was to validate that popular computer vi-
sion models could learn from our synthetic images. We se-
lected two main types of computer vision models for vali-
dation: image classifiers and object detectors. For each 
model type, we fine-tuned multiple pre-trained architec-
tures. For image classification we used ResNet-50 (He, Xi-
angyu, Shaoqing, & Sun, 2016) and Inception (Szegedy, et 
al., 2015). For object detection, we used YOLO-v5s (Jocher, 
et al., 2022) (which is built upon Yolov3 (Redmon & Farhadi, 
2018)), SSS (Liu, et al., 2016) and Faster R-CNN (Ren, He, 
Girshick, & Sun, 2015). 

We conducted a series of experiments that trained the 
models using subsets of the synthetic Limbo data, to vali-
date that the models could learn from the data and to iden-
tify any issues with the data. The results of those experi-
ments are discussed in Sections 4.2 and 4.3. 

3.2 Testing Models on Real Data

After training models using synthetic data, each model was 
tested on the curated collection of real-world data—which 
we refer to as reference data—that is included with Limbo. 
The reference data contains images of both types of rele-
vant UF6 containers and numerous distractors. Each real-
world image in the reference dataset is accompanied by 
metadata that includes copyright information and ground 
truth bounding boxes manually labelled by members of our 
project team (Figure 12). As one can see in Figure 12, the 
manually drawn bounding boxes are not as perfect as 
those generated automatically for our synthetic data. How-
ever, we followed a consistent protocol for bounding box 
labeling, which was subject to inter-rater quality checks 
within our team. We think this protocol resulted in higher 
quality labels than many of the open-sourced labels used in 
the large benchmark datasets, which have documented er-
rors and quality issues (Northcutt, Athalye, & Mueller, 2021).

4.  Metadata including the contents of a scene, background, 
lighting, and camera parameters. 

The images were rendered as a series of thematic “cam-
paigns”, which are used to describe the image sets in ex-
periments in Section 4, and in describing the data in Sec-
tion 6. Importantly, the synthetic images are perfectly 
labelled because the labels themselves are generated at 
the same time as the images, using the same 3D scene 
information. 

In addition to the data proper, we also developed an appli-
cation programming interface (API) to simplify accessing 
the full data and metadata for each image. Information on 
the API is available at: https://limbo-ml.readthedocs.io/. 

3. Data validation procedure

We developed a data validation workflow to ensure that 
computer vision models could be trained using our syn-
thetic images. In this section, we describe the data valida-
tion workflow, the findings from our validation activities, and 
how they informed later iterations of the Limbo data. This 
was a crucial step in the data generation process since the 
Limbo data is intended for computer vision research and 
development. Our workflow was iterative, including four 
steps: rendering synthetic images, training models on syn-
thetic data, testing models on real data, and interpreting 
what the models learned. Then, we incorporated those les-
sons when rendering new synthetic data. The workflow is 
depicted in Figure 11, and each step will be described in 
additional detail below.

Figure 11: Synthetic data workflow.

Figure 12: Sample Limbo reference image labelled by our research 
team (right).
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We also evaluated images of false negative classifications 
and detections. We attempted to observe common fea-
tures of the images that may have impacted the failure to 
correctly classify or detect the object of interest in the im-
ages. The process we used for reviewing misclassifications 
and what we learned from the process is described in 
(Gastelum, Shead, & Marshall, 2022).

3.4 Rendering New Synthetic Data

From our analysis of image classification and object detec-
tion results, we made multiple additions to our Limbo data-
set, including the addition of cylindrical distractor objects 
and arranging containers into rows. After making updates 
to the Limbo data, we re-trained and re-tested our models. 
Selected results and findings from those activities, includ-
ing experimentation with subsets of the Limbo data, are 
described in the following sections. 

4. Data validation experiments

The purpose of the data validation experiments was to con-
firm that computer vision models could be successfully 
trained on our synthetic data and tested on real data. 
Though we imagined that researchers or model developers 
could have access to a small amount of real data, we in-
tended to prepare this data under the assumption that it 
would not necessarily be augmented by real data. Prior re-
search on the use of synthetic data for training models typ-
ically includes large quantities of real-world data such as 
(Ekbatani, Pujol, & Segui, 2017) (Gaidon, Wang, Cabon, & 
Vig, 2016) and (Movshovitz-Attias, Kanade, & Sheikh, 2016), 
and achieves good model performance. However, the sizes 
of the real datasets in these papers (tens of thousands of 
real images) are still beyond the reach of our intended ap-
plication spaces. We have previously examined the impact 
of augmenting synthetic data with small numbers of real 
images, with resulting model performance being approxi-
mately the same (Gastelum & Shead, 2020). Therefore, our 

3.3 Interpreting What the Models Learned

We interpreted the results of our models on reference data 
to identify potential issues with how the computer vision 
models were learning from the Limbo data. The mecha-
nisms we used to interpret model learning differed by mod-
el type. 

For the image classification models, we used machine 
learning explainability methods to visualize the pixels of an 
image that were most influential in each prediction. We re-
viewed the false positive and true positive predictions to in-
terpret the features that were informing positive classifica-
tion results. 

Due to the variation in responses from machine learning ex-
plainability techniques, we simultaneously viewed the ex-
planations from three explainability models: GradCAM (Sel-
varaju, et al., 2017), Guided GradCAM, and Gradient SHAP. 
An example from an early classification model’s false posi-
tive explanation is in Figure 13. From these explanations, 
we interpreted what features of the synthetic Limbo data 
were more relevant during model training and inference on 
the real-world data. Figure 13 shows an early example of 
indications that we needed to add distractor cylindrical ob-
jects into the dataset. Additional details of the classification 
model validation results are below in Section 4.2.

For the object detection models, we opted to use the 
placement of the bounding boxes to interpret the most rel-
evant areas of an image used to make an inference. For ex-
ample, in Figure 14 the model incorrectly detected 48-type 
containers around a human and a 30B container. Similar to 
how we interpreted the image classification results, we re-
viewed the object detection true positives and false positive 
detections   and anecdotally devised potential implications 
of our Limbo data based on what we observed the object 
detection models were learning. The example in Figure 14 
is one of dozens of false positive detections that prompted 
us to integrate synthetic people into our Limbo data. 

Figure 13: Example explanation from a false positive image 
classification, using GradCAM to visualize salient pixels.

Figure 14: Example false positive detection results, in which the 
YOLO-v5s model identified a human and a 30B container as 48-
type containers. 
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trained ten ResNet-50 models for 500 epochs using 5000 
synthetic images of type 48 containers from campaign 17, 
and tested using 1000 additional synthetic images from the 
same campaign. As can be seen, we achieve excellent pre-
cision (>87%) (see Figure 15) and recall (>85%) (see Figure 
16) on the type-48 identification task (metrics are the re-
sults averaged from evaluating all ten models).

For our object detection models, we fine-tuned the pre-
trained YOLO-v5 model with synthetic images from the 
Limbo dataset. We used 8,000 synthetic images for train-
ing, and 2,000 synthetic images for testing.  The dataset 
was comprised of images of single 30B or 48-type contain-
ers from Campaigns 2 and 3, respectively, and background 
(no containers) images from Campaign 6. We balanced the 
dataset with equal number of negative (background) and 
positive (either a 30B or 48-type container present) exam-
ples. For the positive examples, we had the same number 
of 30B and 48-type containers. The YOLO-v5 model was 
trained for 500 epochs.

Like the image classification models, we expected the per-
formance of our train synthetic-test synthetic object 

validation experiments focused on training models exclu-
sively with synthetic data and testing them with real data. 

Descriptions of our validation experiments in which we train 
models on synthetic data and test them on real data are 
detailed in Sections 4.2 and 4.3. These experiments utilize 
image classification models and object detection models. 
While there are other relevant computer vision model types 
available such as image segmentation models, we think 
that these two types provide sufficient evidence for our val-
idation tests. Additional experiments with segmentation 
masks or other model types could prove to be interesting 
future research. 

Model performance in these experiments was measured in 
two ways. First, for image classification models, accuracy 
measures are dependent on the class ratios present in the 
test data, so we evaluated model performance using two 
common computer vision performance metrics: precision 
and recall. Precision is the percentage of items predicted to 
be members of a class that actually are members of that 
class (true positives divided by the sum of true positives 
and false positives, while recall is the percentage of class 
members that are predicted to be members of that class 
(true positives divided by the sum of true positives and false 
negatives).  

Second, for object detection models, we used a hybrid 
scoring approach. We first evaluated object detection mod-
els with the industry standard measure of performance 
mean Average Precision (mAP), which considers model 
performance on multiple object types, evaluation of positive 
and negative identifications, and evaluation of the predicted 
bounding box compared to the ground truth bounding box 
(for a useful tutorial, see (Tan, 2019)). For our evaluations, 
we set the intersection over union (IOU) threshold of 0.25. 
We used this lower-than-typical IOU standard based on our 
deployment assumption that the detection of a relevant ob-
ject, even with an imperfectly aligned bounding-box, could 
still support analysts in finding indications of nuclear 
activity. 

It is important to note that it was not the intent of these ex-
periments to spend significant resources in fine-tuning hy-
per-parameters for best model performance. Rather, we 
used these validation experiments to suggest improve-
ments for our synthetic data and to obtain a rough estimate 
of model performance when using it for training.  

4.1 Confirmation of Model Implementation

Although our focus for eventual deployment is on the train-
synthetic, test-real use-case described above, all of our ex-
periments are tested on synthetic data during training too - 
this allows us to validate that the code is working properly 
and the models are successfully training.  As one extant 
example, the following figures show train-synthetic, test-
synthetic results for one set of experiments where we 

Figure 15: Precision results for image classification implementation 
test.

Figure 16: Figure 16. Recall results for image classification 
implementation test.
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In the first set of models (yellow/green tones along the bot-
tom of Figure 18 and the top of Figure 19), the ResNet-50 
model was trained on synthetic images of single 30B con-
tainers, with negative examples from background images 
without any containers. For these initial models, precision 
scores centered around 0.28 (lower cluster in Figure 18), 
and recall scores around 0.5 (higher cluster in Figure 19). 
The second set of models (in red/orange tones along the 
top of Figure 18 and the bottom of Figure 19), the ResNet-
50models were trained on the same relevant containers, 
but with distractor containers as negative examples in-
stead of backgrounds only. The precision scores for these 
models increased significantly, to around 0.58 (higher clus-
ter in Figure 18), while the recall scores were around 0.35 
(lower cluster in Figure 19). 

The large increase in precision between the first and sec-
ond set of models indicates that the models trained with 
synthetic distractors were better at selecting images with 
relevant containers and not selecting images without rele-
vant containers. The decrease in recall scores between the 
first and second set of models indicates that the models 
became less likely to classify relevant containers than 
before.  

We observed that as we made changes to the content type 
of the synthetic data, the models reacted in predictable 
ways—specifically, learning to be more discriminating with 
cylindrical objects before classifying them as relevant 
containers.

4.3 Object Detection

Our second set of validation experiments focused on ob-
ject detection models. The object detection experiments 
evaluated models trained using subsets of Limbo to see 
how those subsets impacted model performance. In these 
experiments, we used an equal number of positive and 
negative examples to train the model. We considered a 
positive example to include one or more relevant containers 
of interest, and a negative example to contain no objects of 
interest (only background images or distractor containers). 
In these experiments, we used the YOLO-v5s object detec-
tion model, with an intersection over union (IOU) threshold 
of 0.25. Additionally, we calculated mean Average Precision 
(mAP) scores only for the 30B and 48-type containers.

As a baseline for performance, we trained models with 
10,300 images containing individual containers (30B and 
48-type containers). We compared performance of the 
baseline models to two alternatives: first, we trained mod-
els with images containing single containers (30B and 48) 
and single rows of containers (30B and 48). Second, we 
trained models with the same images, plus images con-
taining distractors and individual containers. 

Like we did for image classification, for each experiment, 
we trained 10 models with randomized init iation 

detection models to be high. Using a threshold of 0.5 for 
mAP, performance of the object detection models was 
near-ceiling as shown in Figure 17. 

4.2 Image Classification Validation 

Our first set of computer vision validation experiments were 
focused on image classification. For these experiments, we 
fine-tuned pre-trained ResNet-50 models using our syn-
thetic Limbo data. The models were trained as one-class 
classifiers, with a sigmoid output between zero and one, 
where larger numbers indicated stronger predictions of the 
container class, and lower numbers indicated lower predic-
tion of the container class. We elected 0.5 as the threshold 
for container classification, so that images with scores 
higher than 0.5 were considered a container class and im-
ages with scores lower than 0.5 considered a non-contain-
er class for the purposes of our evaluation.  

We trained 10 models for each experimental run, using ran-
domized initiation points for each model to ensure that 
training results were not serendipitous. We used this ap-
proach instead of cross-validation in order to train the mod-
els exclusively on synthetic data in each run and test them 
exclusively on real data (where cross-validation techniques 
would shuffle these training and test data sets). And we 
tested their performance on our full set of real images and 
recorded the average of the models’ performance. 

In Figure 18 and Figure 19, we show the results for all ten of 
the models but describe overall performance in relation to 
the mean of the ten models. Our classification experiment 
focused on single 30B container classifications and the ex-
perimental manipulation of the content of the negative train-
ing examples—either plain backgrounds, or synthetic dis-
tractors. For each trained model, we used an equal split of 
positive and negative examples.

Figure 17: mAP scores using 0.5 detection threshold 
implementation test.
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Figure 18: Precision scores from our image classification experiment show that image classification models trained with distractor objects 
(top cluster of red/orange lines) had higher precision than models trained without distractors using only background scenes as negative 
examples (bottom cluster of yellow/green lines).

Figure 19: Recall scores for an image classification experiment show that image classification models trained with distractor objects as 
negative examples (bottom cluster of red/orange lines) had lower recall than models trained with background scenes as negative 
examples (top cluster of yellow/green lines). 
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containers and rows. The two scenarios are within statisti-
cal deviation of each other, but the mean mAP score for 
models trained on individual containers and rows is higher. 
In this case, we hypothesize that by training the model with 
examples of distractors, especially distractors occluding 
UF6 containers, the model learned features of the occlud-
ing object and incorrectly associated it with the 30B or 48 
containers, lowering the mAP score. Furthermore, by in-
cluding distractors in the categories for the model to learn 
from in the training set, the object detection problem be-
comes harder because the model has more options to 
choose from, and we observed that the model confused 
30B or 48-type containers for distractors in some instanc-
es, which also lowered the mAP score. 

To better compare the impact of different synthetic images 
on our image classification and object detection models, 
we conducted an analysis in which we judged both models 
using common metrics. We adapted the signal detection 

parameters and took the mean of their results to ensure 
that test results were not the product of an especially high- 
or low-performing model. We found that by including imag-
es with rows of containers along with others showing indi-
vidual containers during training, the mAP score improved 
compared to the baseline model where only individual con-
tainers were present, as shown in Figure 20. The real-world 
images contain scenarios where the relevant containers are 
in rows, and through inspection of the object detection re-
sults, we noticed models trained without examples of con-
tainers in rows, i.e., only using individual containers, strug-
gled to identify examples when presented with a row of 
containers. By providing the model with examples of con-
tainers in rows in the training data, the model was able to 
learn that more containers were present and detect them. 

The model trained using both containers and distractors in-
creased the mAP score relative to the baseline model but 
did not improve per formance relative to individual 

Figure 20: Mean Average Precision (mAP) Scores for Object Detection Experiments. As variety and complexity of training data increased, 
so did model performance. There was a minor difference in performance between models that were trained with individual and rows of 
relevant containers and models that also included distractor objects. The green, blue, and red lines indicate training runs with single 
containers (30B and 48) and background; single containers, background, and single rows of containers; and single containers, 
background, distractors plus single containers, and single rows of containers, respectively.
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retrieved was relevant) and recall scores decreased (i.e., 
fewer of the total relevant items were recalled), we see the 
same pattern in the object detection models when they are 
evaluated as classifiers. 

We had anticipated this result, that as the models learn 
more about other types of containers that exist, they be-
come more discriminating in their classifications and there-
fore may also miss more relevant items.

Finally, when we compared the performance of our image 
classifiers and object detectors on the same metrics of pre-
cision and recall, we found that both model types had simi-
lar precision scores, but recall scores were significantly 
higher for the object detection models. The underlying 
models are different, so it is difficult to make broad general-
izations about what this could mean for computer vision 
generally, but it could indicate that models trained as object 
detectors are better able to identify—based on the more 
specific nature of the training data—relevant features that 
could increase recall, thereby decreasing the potential 
number of relevant items missed by these models.  

4.4 Interpreting Model Results

As described in Section 4, we interpreted the computer vi-
sion results using explainability techniques for the image 
classification models and visualization of the bounding box-
es for the object detection models. Our most notable ob-
servations, and their subsequent impacts on the Limbo 
data, are described here. 

Relevant containers in rows. One of our first observations 
from the image classification explainability activities was 
that when relevant containers were pictured in rows, a 
model that was trained on single containers only appeared 
to be focusing primarily on the first one or two containers. 
In response, we began generating rows of relevant contain-
ers such as might be seen in a shipping or storage area. 
These changes can be observed in campaigns 4 and 5. 

Synthetic distractors. We also observed in our image clas-
sification explainability tests that the models were recogniz-
ing many real-world cylindrical objects as 30B or 48-type 
containers. We think this was caused by negative examples 
in early trials, which consisted of backgrounds without any 
additional synthetic content, such as synthetic cylindrical 
distractors. In response, we introduced synthetic distrac-
tors—primarily cylindrical, round, industrial objects. These 
changes can be observed starting in Campaign 7. 

Synthetic distractors in groups. We thought it would be in-
formative to render our distractor objects in groups or clus-
ters, instead of the well-aligned rows of campaigns 4 and 
5. This change can be seen starting in campaigns 8 and 9. 

Partially occluded containers. As a follow-up to the chang-
es made in point 1, we also wanted to occlude containers 
with distractor objects rather than just relevant containers. 

performance metrics used in image classification (true pos-
itive, true negative, false positive, and false negative) for ob-
ject detection as follows:

• For any image that had an object of interest (as defined 
by our team’s labeling), an object detection-generated 
bounding box for that type of object in the image was 
considered a true positive regardless of its location 
within the image.

• For any image that did not have an object of interest, 
the absence of an object detection-generated bound-
ing box of that type in the image was considered a true 
negative.

• For any image that had an object of interest, but the 
object detection model did not place a bounding box 
of that type anywhere in the image, it was considered a 
false negative.

• For any image that did not have an object of interest, 
but the object detection model placed a bounding box 
of that type anywhere in the image, it was considered a 
false positive.

We present the performance of our object detection mod-
els when they were evaluated as classifiers in Figure 21. We 
provide a summary of observations from assessing our ob-
ject detection models as classifiers, and model-to-model 
performance comparisons, below. 

First, we observed that increases in performance from in-
cluding more diverse images in training (as shown in Figure 
20) was not as great for the object detection models when 
they were used as classifiers. This is likely due to an in-
crease in the baseline model performance coming from the 
lower bar for true positives than for correct object 
detection. 

Second, we had not previously tested differences in com-
puter vision model performance between 30B and 48-type 
containers. Our early image classification testing focused 
mostly on 30B containers, and we did not differentiate con-
tainer types in performance reporting in earlier object de-
tection models. With this new testing, which included both 
types of containers and easily differentiated results based 
on how classification results are reported, we found that 
the object detector—when measured like a classifier—has a 
higher precision and recall with 48-type containers com-
pared to the 30B containers. This may be due to the more 
visually distinct features of the 48-type containers com-
pared to the 30B containers. 

Third, we found stable patterns in the trade-off between 
precision and recall as we increased the variety in the train-
ing data. In Figure 18 and 

Figure 19, we show that as we increased the variety, preci-
sion scores increased (i.e., a higher proportion of data 
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Figure 21: Applying signal detection performance assessments for determining precision (top) and recall (bottom) to the object detection 
results. The hatched lines represent performance on 30B containers, and the solid (no hatch marks) represent performance on the 48-
type containers. See Table 1 for a description of the campaign details. 
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We acknowledge that the premise of computer vision mod-
els learning the wrong features may be controversial. How-
ever, it is our aspiration that computer vision models re-
spond more like human observers and recognize the 
intended item across many varied environments. We think 
the ability of computer vision models to learn the defining 
visual characteristics of relevant objects is especially crucial 
for high consequence domains such as nuclear nonprolif-
eration, where learning irrelevant features could have seri-
ous security consequences.   

At this point, we think attention must be placed back on 
feature engineering and the models themselves: what are 
the features they are learning, and can we force them to 
learn only the features we deem important? Can we identi-
fy and prune features that are irrelevant? We believe the 
next step in computer vision research and development—
especially for high-consequence domains where real-world 
data is limited and synthetic data will likely play a significant 
role—will require new ideas and new architectures that al-
low model trainers to explicitly specify the relevance of 
data.

6. Accessing and using the data

The images, metadata, reference data, and documentation 
for the Limbo dataset are available to the public as unclas-
sified, unlimited release data. While Sandia does not own 
the reference data, we have checked copyright information 
to the best of our ability and have included only data that 
we believe is shareable. The full Limbo dataset, including 
one million synthetic images, hundreds of real-world refer-
ence images, and all associated metadata is hosted in the 
Lawrence Berkely National Laboratory’s Berkeley Data 
Cloud (BDC). The data is open source and available to any-
one with a free BDC account. Before accessing BDC, how-
ever, we recommend reading the documentation, terms of 
use, and API information detailed at: 

https://limbo-ml.readthedocs.io/ 

The Limbo data is organized into a series of topical cam-
paigns that provide a manageable file structure of roughly 
50000 images each and reflect the lessons and observa-
tions from our data validation experiments (see Section 4). 
The rendering campaigns are described in Table 1, and in 
the documentation provided at our website.

Combinations of distractors with relevant containers ap-
pear starting with campaigns 8 and 9. 

Synthetic people. As seen in Figure 14, our object detec-
tion models frequently mis-labelled people as containers. In 
response, we introduced synthetic 3D people in campaigns 
18 and 19. 

Animated walk-through. During its development, we collab-
orated with partners who wanted to use the Limbo data for 
their own R&D. One project—the 3D Computer Vision for 
Safeguards project—is developing container counting ca-
pabilities intended for use by a safeguards inspector walk-
ing through a facility. In anticipation of their needs, Limbo 
campaign 20 provides an extensive animated walk-through 
of the synthetic environment that could be used for frame-
by-frame tracking and counting of objects. 

5. Discussion and future work

During our iterative image validation process, we made 
several general observations about training computer vi-
sion models with synthetic data, which we briefly summa-
rize here along with thoughts on additional research.

First, negative examples are more effective when they in-
clude distractors. This observation came directly from our 
validation activities and is described in Section 4.2 and 4.3, 
as well as our discussion of updates to the data as an out-
come of the validation process in Section 4.4

Second, object configuration and positioning had a larger 
influence on detection rates than expected. This was also 
addressed in Section 4.2 and 4.3, and included an update 
in our synthetic data described in Section 4.4. 

Third, training computer vision models to be more discrimi-
nating through the inclusion of distractor objects in training 
data can lead to a classic performance trade-off of im-
proved precision, but lower recall. 

Fourth, computer vision models are generally learning the 
wrong lessons from training data. Anecdotally, there are 
many synthetic images in the Limbo dataset that our hu-
man colleagues found difficult to distinguish from real-
world data. The problem of domain shift between datasets 
has been well-documented in computer vision research, 
and (Movshovitz-Attias, Kanade, & Sheikh, 2016) describes 
its relevance to synthetic as well as real datasets. However, 
we note that even when human observers can tell which 
images are real and which are synthetic, they still have no 
difficulty correctly recognizing the (real or synthetic) cylin-
ders.  Yet computer vision models display significant differ-
ences in performance when evaluating real and synthetic 
images.  This implies not only that there are differences be-
tween the synthetic and real feature distributions, but that 
the models are making decisions based on image features 
that humans somehow ignore as irrelevant. 
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Campaign 
No. Campaign Description and Associated Figure.

2 30B containers viewed individually, in the relative center of the frame of real-world 3D HDR backgrounds. 50,000 of 
the images depict 30B containers, and 5,000 images show only the backgrounds without containers for use as 
negative examples. See Figure 1.

3 48-type containers (X, Y, and G designs intermixed) viewed individually, in the relative center of the frame of real-world 
3D HDR backgrounds. 50,000 of the images depict 48 containers, and 5,000 images show only the backgrounds 
without containers for use as negative examples. See Figure 22. 

4 48-type containers (X, Y, and G designs intermixed) arranged in rows in real-world 3D HDR backgrounds. 50,000 of 
the images depict 48 containers, and 5,000 images show only the backgrounds without containers for use as 
negative examples. See Figure 23.

5 30B containers arranged in rows framed in real-world 3D HDR backgrounds. 50,000 of the images depict 48 
containers, and 5,000 images show only the backgrounds without containers for use as negative examples. See 
Figure 24.

6 No containers. This campaign contains images from our 3D HDR backgrounds as negative examples. See Figure 25.

7 Single synthetic distractor objects arranged in our real-world 3D HDR backgrounds. See Figure 26.

8 Single 30B containers pictured with a single distractor, in the real-world 3D HDR background. Depending on camera 
placement and container size, one of the containers might not be visible in some images. See Figure 27.

9 Single 48 containers pictured with a single distractor, in the real-world 3D HDR background. Depending on camera 
placement and container size, one of the objects might not be visible in some images. See Figure 28.

10 Clusters of distractor objects, including up to three distractor types, in real-world 3D HDR backgrounds. See Figure 
29.

11 Single 30B container with up to three types of distractor objects clustered around the container, in real-world 3D HDR 
backgrounds. This campaign offers more views of occluded containers than previously demonstrated. See Figure 30.

12 Single 48 container with up to three distractor objects clustered around the container, in real-world 3D HDR 
backgrounds. This campaign offers more views of occluded containers than previously demonstrated. See Figure 31. 

13 Highly complex environment with a single 48 container and many distractors of up to 10 different types filling the 
frame, in real-world 3D HDR backgrounds. These images are intended to test the limits of computer vision 
applications. See Figure 32.

14 Highly complex environment with a single 48 container and many distractors of up to 10 different types filling the 
frame, in real-world 3D HDR backgrounds. These images are intended to test the limits of computer vision 
applications. See Figure 33.

15 Each individual UF6 container type developed for this project, with every possible surface type, viewed from many 
angles. Backgrounds are real-world 3D-HDR backgrounds. See Figure 34.

16 Between 0 – 50 30B containers with multiple distractors placed in synthetic 3D oil refinery background. See Figure 35

17 Between 0 – 50 48 containers with multiple distractors placed in synthetic 3D oil refinery background. See Figure 36.

18 Single 30B containers with multiple distractors and with the addition of people placed in synthetic 3D oil refinery 
background. See Figure 37.

19 Single 48 containers with multiple distractors and with the addition of people placed in synthetic 3D oil refinery 
background. See Figure 38.

20 30B and 48 containers pictured together, with distractor objects, in an animated walkthrough of the synthetic oil 
refinery background. This campaign is intended for use in computer vision research involving video data. See Figure 
39.

Table 1: Limbo campaign descriptions.
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Figure 22: Example from campaign 3, with a single 48-type 
container.

Figure 26: Example from campaign 7, with a single distractor 
object.

Figure 24: Example from campaign 5, with rows of 30B  
containers. 

Figure 28: Example from campaign 9, with a single 48-type 
container and one distractor.

Figure 25: Example from campaign 6, showing a  background 
image with no containers.

Figure 29: Example from campaign 10, with  groups of 
distractors.

Figure 27: Example from campaign 8, showing one distractor 
and one 30B container.

Figure 23: Example from campaign 4, showing rows of 48-type 
containers.
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Figure 30: Example from campaign 11, showing groups of 
distractors with one 30B container. 

Figure 34: Example from campaign 15, in which a 30B 
container is pictured from below.

Figure 32: Example from campaign 13, with many distractors and 
one 48-type container.

Figure 36: Example from campaign 17, with several 48-type 
containers and distractors in a synthetic background.

Figure 33: Example from campaign 14, with many distractors with 
one 30B container.

Figure 37: Example from campaign 18, with 30B containers, 
distractors, and people in a synthetic background.

Figure 31: Example from campaign 12, with groups of distractors 
with one 48-type container.

Figure 35: Example from campaign 16, with several 30B 
containers and distractors in a synthetic background.
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be expressed in the written work do not necessarily repre-
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sive, paid-up, irrevocable, world-wide license to publish or 
reproduce the published form of this written work or allow 
others to do so, for U.S. Government purposes. The DOE 
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