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Abstract:

Given an Inspectorate with the task of verifying the 
adherence of an Operator of a group of facilities to an 
agreement on permitted activities within those facilities, 
how large should the inspection effort be and how should it 
be distributed among the facilities? A game-theoretical 
approach is described which addresses these important 
questions, generalizing and extending the applicability of 
earlier inspection models, which either treated inspection 
effort as extrinsic, or which imposed special assumptions. 
A solution of the inspection game, i.e., a Nash equilibrium, 
is presented in quite general terms, and two applications 
are presented.
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optimization

1. Problem formulation

The problem of distributing inspection effort across differ-
ent locations or facilities has been the subject of various 
analyses in the past. In cases where inspections serve the 
purpose of deterring an organization or State from violation 
of an agreement or treaty, game theoretical models involv-
ing inspection resource distribution in space and over time 
have been applied. These models attempt to formulate in-
spection goals in terms of some objective function such as 
detection probability, expected time to detection of illegal 
behaviour, or deterrence.

The allocation of some – continuously divisible – inspection 
effort was explicitly the subject of analyses by [1], [2] and [3]. 
The latter work was the stimulus for the present contribution. 
While Deutsch et al. imposed very specific assumptions, it 
will be demonstrated that their approach, related to earlier 
work in [4], can be applied to much more general situations.

Problems of distributing inspection effort across different 
locations or facilities have also been discussed for some 
time in the context of applying nuclear material safeguards 
under the State Level Approach by the International Atomic 
Energy Agency (IAEA) in Vienna. In partial fulfilment of the 
Non-Proliferation Treaty (NPT) the IAEA verifies the peace-
ful use of nuclear material in the Treaty's member States 
[5]. Within this rather general context, the following impor-
tant questions must be answered: How much inspection 
effort shall the IAEA allot to a given State? How should that 
effort be distributed over the individual nuclear facilities 
within the State? Since major studies along this direction 
have not been forthcoming from other fields of application, 
nuclear safeguards in particular and arms control in gener-
al have stimulated original work which has become to be 
known as the field of inspection games; see, e.g., [6] and 
[7].

In section 2 a general inspection model is developed, that 
is, a set of assumptions which permits the analysis of the 
inspection problem in quantitative terms. In section 3 a 
Nash equilibrium of the resulting non-cooperative two-per-
son game is presented. Since the game and its solution are 
expressed in rather general terms, two applications are giv-
en in sections 4 and 5. The concluding section 6 remarks 
on further applications and future extensions of the results 
are discussed.
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2. The Model

We consider  facilities operated by an organization or 
State which are subject, under a verification agreement, to 
control by an Inspectorate or Inspector. An illegal activity, in 
the sense of the agreement, is assumed to take place in at 
most one facility, since this way the number of staff mem-
bers involved in the illegal activity is kept small.

If the illegal activity is performed in facility , , 
then it will be detected with some probability . Note that 
the , , do not necessarily sum to unity. For ex-
ample, if an a-priori required detection probability of 

  is assumed in all facilities, then for  the 
sum of the ’s exceeds .

At IAEA and other inspection authorities the inspection 
measures  spent at the -th facility, , depend 
on the a-priori required detection probabilities  for any of 
the facilities, i.e.,  For example,  for ‘high’ 
and  for ‘low’ probability level; see [5]. Since how-
ever, values of this kind can hardly be justified by formal 
means, we consider in this paper the reverse case: At the 
-th facility, the inspection measure  is taken which then 
results in a detection probability  for that facility, i.e. , 
under the condition that the illegal activity takes place in fa-
cility . Note that the  are conditional probabilities 
which do not need to add up to one when summing with 
respect to the conditional event (see the example above). 
The probabilities  are related to each other only via 
the effort boundary condition; see (1) below. Also note that 
according to , in any of the facilities with  
an inspection is performed by applying the inspection 
measures . Assumptions on  are given 
in (7).

Also assume that the unit inspection measure in the -th fa-
cility requires the inspection effort , 
and that the total available inspection effort is fixed,

Therefore, the Inspector’s strategy set is

  

 (1)

Let , , be the probability that the illegal activity 
takes place in the -th facility and let  be the probability 
for legal behaviour. These probabilities sum to unity, be-
cause as stated above, the Operator will act illegally in at 
most one facility. Therefore, the Operator’s strategy set is

  

(2)

In a non-cooperative two-person game formulation of this 
inspection problem, the payoffs to the Inspector (player 1) 
and to the Operator (player 2) are given by

          

(3)

where we have for all 

Note that  since the highest priority of the Inspector 
is to deter the Operator from illegal behaviour.

By (3), the expected payoff to both players, conditional on 
the facility , , at which the illegal activity is per-
formed, is, for all , given by 

  

(4)

Define for all 

  (5)

Because the Operator behaves illegally in at most one facil-
ity (see above), and because the probability of behaving ille-
gally in facility  is , the (unconditional) expected payoffs to 
both players are, using (4) and (5), for all  and for all 

 given by

  

(6)

By (1), (2) and (6), a non-cooperative two-person game 
 is defined.

The functional dependence  is assumed to be strictly 
monotonically increasing and strictly concave, i.e., for 

 and for all  ,

  

(7)
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(8)

where  and  are given by (5). Comparing the payoffs (6) 
and (8) we see that if we put  for all 

, then the payoffs in (6) simplify to the payoffs in 
(8). Therefore, the inspection model in this paper is a far 
more general inspection model than that in chapter 6 of [4], 
and in case of  and  for all 

, both inspection games formally coincide. 
However, as mentioned above, both inspection models de-
scribe very different inspection problems, and it is surpris-
ing that they lead to the same forms for the expected pay-
offs, which then result in corresponding Nash equilibria.

Note that in [2] and [4] the special case , 
, is also considered in a  -person game 

with  independently acting Operators, each responsible 
for one facility only. We will come back to this model in sec-
tion 6.

3. Nash Equilibria

In this section we solve the non-cooperative two-person 
game  by determining the so-called Nash-
equilibrium; see [8]. A Nash equilibrium is a pair of strate-
gies with the property that unilateral deviation of one player 
from its equilibrium strategy does not improve the devia-
tor’s payoff. Formally, the pair of strategies  with 

 and  constitutes a Nash equilibrium of the 
game  if and only if the Nash the equilibrium 
conditions

         
(9)

are fulfilled. Because of (7), the existence of a Nash equilib-
rium for the game  can be assured using the 
Theorem by Nikoida-Isoda; see [9].

The Nash equilibrium of the game  is given in 

Theorem. Given the non-cooperative inspection game 
 and assume that (7) is fulfilled. Without loss 

of generality assume

   

(10)

Let  be chosen so that

(11)

where  is the inverse funct ion of  for  

Justification of (7): One can assume reasonably that the 
higher the inspection measures  in facility , the higher the 

conditional detection probability . Thus,  must 
be monotone increasing. The strictly monotone behaviour 
of  assures the existence of its inverse , i.e., 

 for all  and all 
. The strict concavity of  is needed to as-

sure a global maximum of the Inspector´s expected payoff; 
see the proof of the Theorem.

In chapter 6 of [4] an inspection model is considered which 
is, with respect to modelling, very different to the inspection 
model described in this paper, but its game theoretical so-
lution, i.e., the Nash equilibrium, is a special case of the 
game theoretical solution of the inspection game presented 
in this paper. Therefore, for reasons of comparisons, we 
present the inspection game of chapter 6 of [4] in some 
detail. 

The Inspector chooses the facility in which the inspection is 
performed with probability , , and only one fa-
cility is inspected. Therefore, the Inspector's strategy set in 
[4] is given by

If we put  for all , then we have, us-

ing (1),  and the Inspector’s strategy sets coincide. To 
illustrate the difference in the meaning of  in both inspec-
t i o n  m o d e l s ,  c o n s i d e r   f a c i l i t i e s  w i t h 

 and assume that  and  are 
measured in hours. If the Inspector plays  

, then he performs in the inspection 
model described in this paper an inspection in all three fa-
cilities each one lasting 20 minutes. In the inspection model 
in [4], however, only one of the three facilities is inspected, 
and each one is selected with probability .

In [4], the Operator chooses the facility in which the illegal 
activity will take place with probability , , 
whereby only illegal behaviour is considered. Thus, the Op-
erator’s strategy set in [4] coincides with the Operator’s 
strategy set (2) if we assume  in (2).

Regarding the payoffs to both players, in [4] it is assumed 
that if the inspection is performed in the same facility in 
which the illegal activity takes place, then detection hap-
pens with detection probability , . In [4] it 
is shown that the (unconditional) expected payoffs to both 
players are then given by
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, and the first inequality is to be ignored for 
 and the second for .

(i) For  equilibrium strategies for the two players 
are

(12)

and

(13)

 
The equilibrium payoff  to the Operator is given implicit-
ly by

(14)

and it satisfies the condition

(15)

The equilibrium payoff  to the Inspector is given by

(16)

where  and  are given by (13) and (14).

(ii) For , i.e., with (10) and (11) for

(17)

the set of equilibrium strategies of the Inspector is, for all 
, given by 

       (18)

The equilibrium strategy of the Operator is  and 
 for all , i.e., legal behaviour of the Opera-

tor. The payoffs to both players are zero.

Proof. 1) We show that the inequalities in (11) cover the 
whole parameter space. The proof goes along the same 
lines as in the proof of Theorem 6.2 in [4]: We show that, for 
given values of , , the inequalities in (11) 

cover all values of . For  and with (7), both 
inequalities in (11) are equivalent to

 

Thus, we have to show that

 

This is equivalent to

(19)

We show that the left-hand side of (19) is less than zero and 
hence, as the right-hand side is by (10) larger than zero, 
that the inequality holds. By (10) we have  
as well as   and thus, the monotonici-
ty of  and , implies

 

which implies that the left-hand side of (19) is less than 
zero. For  the second inequality in (11) is equivalent to

and for , the first inequality in (11) is, because of 
, equivalent to
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cover all values of . For  and with (7), both 
inequalities in (11) are equivalent to

 

Thus, we have to show that

 

This is equivalent to

(19)

We show that the left-hand side of (19) is less than zero and 
hence, as the right-hand side is by (10) larger than zero, 
that the inequality holds. By (10) we have  
as well as   and thus, the monotonici-
ty of  and , implies

 

which implies that the left-hand side of (19) is less than 
zero. For  the second inequality in (11) is equivalent to

and for , the first inequality in (11) is, because of 
, equivalent to

which completes the first part of the proof.

2) We show that (15) holds for . Assume 
. With (14) this implies

which is a contradiction to the first inequality in (11).  
Assume . Then (14) implies

which is a contradiction to the second inequality in (11).

3) Because the functions  are monotone increasing 
and  (12) is equivalent to

 

   (20)

Note that  is equivalent to  for all 
 which holds because of (10) and (15), and 
 is equivalent to  which holds be-

cause of  for all . 
Thus, we have, with (2), (6), (10) and (20),

for all , i.e., the second inequality in (9) is satisfied.

Before we derive the Inspector’s equilibrium strategy, we 
note that for the Operator’s equilibrium strategy we must 
have  for all : Suppose  for a 

facility , then the Inspector would have to 
allocate some of the inspection effort in facility . However, 
because of  for all , he does not allo-
cate inspection effort in facility , we must have  for 
all .

Using the first inequality in (9), we determine  such that 
 is maximized with respect to , and we apply the 

Lagrange formalism. Using the Lagrange function  
given by

   
(21)

we determine  such that for all 

where the Lagrange parameter  is determined with the 
help of the normalization of the . Using (6) and (21), the 
condition

implies for all 

and leads, by using the normalization in (2), to (13). The 
condition  for all  is obvious, and 
we even have  for all . The Hessian 

 of the Lagrange function  is a diagonal 
matrix:

Therefore, the eigenvalues of the Hessian  are the 
diagonal elements. Because  and  are all as-
sumed to be strictly concave functions (see (7)), all eigen-
values of the Hessian  are smaller than zero, and 
thus, the Hessian is negative definite. Therefore,  is 
a concave function and Theorem B in [10] implies that  is 
even (because of the concavity of ) a global maxi-
mum of   with respect to .

4) For  we see immediately that (18) and  
satisfy the equilibrium conditions (9). This completes the 
proof.
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Three comments on the Theorem. First, as mentioned at 
the end of section 2, the inspection model in chapter 6 of 
[4] can be seen as a special case of the inspection model 
considered in this paper: Put  and 

 for all . Because we have here 
 for all , the last condition in 

(7) is not fulfilled, and thus, the Theorem cannot be applied. 
Surprisingly, however, the Theorem also covers this case. 
This can be seen by comparing the Nash equilibrium ob-
tained in case (i) of the Theorem with the Nash equilibrium 
presented in Theorem 6.2 in [4]. They coincide. Note that 
because in [4] only illegal behaviour of the Operator is con-
sidered, i.e., , case(ii) of the Theorem is not part of 
Theorem 6.2 in [4].

Second, there are some general features of this solution 
which are typical for inspection games of this kind, for ex-
ample, the fact that the equilibrium strategies depend only 
on the system parameters of the adversaries, or the so-
called cone of deterrence (18); see [11]. Since, however, it is 
difficult to discuss more properties of the solution in gener-
al terms, we look at an inspection regime based on attrib-
ute sampling procedures in section 4 and analyse a time 
constrained inspection model in section 5.

Third, the Theorem presents a Nash equilibrium but does 
not address the issue whether there are further Nash equi-
libria. Indeed, the uniqueness of Nash equilibria in this in-
spection game is an open question. In section 4 we make a 
short comment on the uniqueness in case of  facili-
ties and that  depends linearly on .

4. First Application: Attribute Sampling

Consider the problem of safeguarding nuclear material in 
connection with the NPT, in which the role of the Inspector, 
or player 1, in the model of this paper is played by the IAEA 
in Vienna: There are  storage facilities for spent nuclear 
fuel elements in a State (or community of States such as 
the European Union), operated by an Operator, or player 2. 
The -th storage facility contains  fuel elements, 

, the inspection of one of which requires the ef-
fort . Thus, if  items in the -th facility are verified, the 
total inspection effort is

(22)

For , , (22) means that the total number 
of elements to be verified is fixed. Of course, the number 

 , , of verified items in facility  is a nonnegative 
integer by their very nature. To be able to apply our Theo-
rem, we have to consider  as continuous variable. In the 
applications we have in mind, the  may go into the hun-
dreds, therefore, we assume that in these cases the error is 
small, if nonnatural  are rounded to natural ones such 

that the boundary condition is maintained. In the second 
application (see section 5) there does not exist such a 
problem.

Furthermore, we assume that in the sense of the NPT it is 
necessary to detect the diversion of at least one fuel ele-
ment in one of the facilities. Let us first consider the case 
that, in order to acquire a so-called significant quantity of 
nuclear material (see [5]), just one fuel element needs to be 
diverted. The diversion strategy involves replacing the re-
moved fuel element by a dummy.

If the diversion takes place in facility , then the conditional 
detection probability (see section 2) in case of drawing 
without replacement is for all , given by

(23)

Because we have all 

(7) is fulfilled except the last condition. It can be shown, 
however, that also in this specific case the results of the 
Theorem are valid; see the first comment after the Theo-
rem. Because (23) is equivalent to  for , 
we get in case of  by (12) through (16) the equi-
librium strategy of the Inspector

  (24)

where  according to (11) is given by

and where with (14) the equilibrium payoff  to the Oper-
ator is given by

The equilibrium strategy of the Operator is

(25)

and the equilibrium payoff  to the Inspector is
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where   according to (11) is given by

and where with (14) the equilibrium payoff   to the Oper-

ator is given by

The equilibrium strategies of the Operator are

(31)

and the equilibrium payoff  to the Inspector is

where  and  are given by (30) and (31). For  

and with (17) the condition for legal behaviour is

(32)

and the set of equilibrium strategies of the Inspector is, for 

all  , given by

(33)

Let us compare conditions (27) and (32) for legal behaviour: 

Because of

the inspection effort  according to (27) has to be larger 

than that according to (32) which is reasonable: In the for-

mer case the number of manipulated fuel element is small-

er than in the latter, therefore it is more difficult to detect 

them.

  (26)

where  is given by (25). For  and with (17) the 
condition for legal behaviour of the Operator is

(27)

and with (18) the set of equilibrium strategies of the Inspec-
tor is for all , given by

(28)

At this point we make a remark on the uniqueness of the 
Nash equilibria given by the Theorem. For  facilities it 
can be shown that (24) through (28) represent the only 
Nash equilibrium of the game. Also, it can be shown that in 
case of legal behaviour of the Operator, i.e., (27) holds, (24) 
is not an equilibrium strategy of the Inspector for   
whereas this is so for .

Now we assume that, in order to acquire a significant 
quantity of nuclear material, it is necessary to divert not 
one but two fuel elements, again by replacing them by 
dummies. If the diversion takes place in facility , then the 
conditional detection probability (see section 2) is, for all 

, given by

or, for our purposes in case of ,

(29)

(7) is fulfilled, because

 

 
From (29) we get  for all , 
and thus, for  we get from (12) through (16) the 
equilibrium strategy of the Inspector

∗ =

⎩
⎨

⎧
 1 − 1 −

− ∗
= 1, … ,

0 = + 1, … ,

 , (30)
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5. Second Application: Time Constrained 
Inspections

Let us consider next the problem of drug control at a large 
international seaport. Assume that  ships of varying sizes 
have arrived from South American ports of origin and are 
being unloaded. The port Customs Authority has in total   
man-hours at its disposal for inspection of the cargoes for 
concealed drugs. We might model the detection probability 
for the -th ship,  , as a function of allotted con-
trol time as

  (34)

with parameters . The expected detection time  will 
increase with the size of the ship (or of its cargo). We have 
for all 

so that (7) is fulfilled. According to our assumptions, we 
have

We assume additionally that, if drugs are actually being 
smuggled, it is under the control of a single organization, in 
the following called Smuggler. In section 6 we will sketch 
the case that there are several independent Smugglers.

From the Theorem we get with  for  and 
 the following equilibrium strategies and payoffs. 

For , the equilibrium strategy of the Customs 
Authority is by (12)

where according to (11)  is given by

and where the equilibrium payoff  to the Smuggler is 
given by

Furthermore, the equilibrium strategy of the Smuggler is by 
(13)

and the equilibrium payoff  to the Customs Authority is 
given by (16). For , and with (17), the condition 
for legal behaviour is

(35)

and the set of equilibrium strategies of the Customs Au-
thority is, for all , given by

(36)

Here, the lower limit for  is proportional to the expected 
detection time and increases monotonically with the ratio 

, i.e., with the ratio of the smuggler’s incentive to its 
punishment in the event of detection.

6. Summary and outlook

As already mentioned at the end of section 2, in [2] and in 
[4] the special case  for all , is also 
considered in a -person game with  independent-
ly acting Operators, each responsible for one facility only.

Without going into all details of sections 2 and 3, this in-
spection problem can be analysed in the same way as be-
fore under the same assumptions for the Inspector: Where-
as the Inspector’s strategy set and its (unconditional) 
expected payoff are again given by (1) and the first equation 
of (6), the strategy set of the -th Operator, , and 
the corresponding (unconditional) expected payoff are giv-
en by

We will not formulate the solution of this -person 
game as a Theorem. We just report that – not surprisingly – 
the condition for legal behaviour of all  Operators is again 
given by (17), respectively (27), (32) and (35), and the cone 
of deterrence, i.e., the set of strategies of the Inspector in 
case of legal behaviour of all Operators, again by (18), re-
spectively (28), (33) and (36).

We think that these results, together with those presented 
in the Theorem and of earlier work, e.g., in [11], describe a 
universally valid structure of the problem of deterring per-
sons, organizations or even States from illegal behaviour by 
appropriate inspections.

As a future activity we plan to contact an oversea port au-
thority to discuss according to which criteria its inspection 
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