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Abstract:

Natura l  language processing (NLP) tasks (tex t 
classification, named entity recognition, etc.) have seen 
revolutionary improvements over the last few years. This is 
due to language models such as BERT that achieve deep 
knowledge transfer by using a large pre-trained model, 
then fine-tuning the model on specific tasks. The BERT 
architecture has shown even better performance on 
domain-specific tasks when the model is pre-trained using 
domain-re levant tex ts. Inspired by these recent 
advancements, we have developed NukeLM, a nuclear-
domain language model pre-trained on 1.5 mill ion 
abstracts from the U.S. Department of Energy Office of 
Scientific and Technical Information (OSTI) database. This 
NukeLM model is then fine-tuned for the classification of 
research articles into either binary classes (related to the 
nuclear fuel cycle [NFC] or not) or multiple categories 
related to the subject of the article. We show that 
continued pre-training of a BERT-style architecture prior to 
fine-tuning yields greater performance on both article 
classification tasks. This information is critical for properly 
tr iaging manuscripts, a necessary task for better 
understanding citation networks that publish in the nuclear 
space, and for uncovering new areas of research in the 
nuclear (or nuclear-relevant) domains.
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1. Introduction

While natural language processing (NLP) has made signifi-
cant strides in recent years, its application to the nuclear 
domain has remained rudimentary. In any domain, the 
ability to classify and prioritize information is critical when 
the data volume is large and growing. To enable the dis-
covery of new connections between existing technologies 
or the potential use of a new technology in the nuclear do-
main, simple keyword searches are insufficient. To accel-
erate research in the nuclear domain, a language model is 
needed—one that “understands” nuclear terminology, “un-
derstands” terminology in similar energy domains, and can 
automatically uncover latent similarities between materials, 
methodologies, and technologies.

In addition to accelerating nuclear science, this new meth-
odology would be valuable to the International Atomic En-
ergy Agency (IAEA) as part of their information collection 
and processing system. Quantifying the threat of a nation 
state’s nuclear capability presents a particularly complex 
problem because the use, development, and transfer of 
nuclear technology is not itself an indication of nefarious 
intent. Technology itself has the added complexity of en-
compassing both physical items of trade, as well as social 
networks in academia and industry settings, where the 
“technology” is not a physical, tradeable good, but the 
knowledge and capabilities of individuals [1]. Further, as in-
ternational scientific collaborations become more preva-
lent, transfer of nuclear technology may become more 
prevalent, including inadvertent transfers. Readily available 
open-source information about such research collabora-
tions, e.g., journal papers and technical reports, can offer 
indications of the use or transfer of such technology. Ex-
tant approaches to processing such information, to the 
limited extent it is attempted, rely heavily on manual analy-
sis by humans, a method constrained by time and subject-
matter expertise. A new approach would help the IAEA to 
develop capabilities toward the detection of nuclear tech-
nology use or transfer through analysis of technical 
publications.

The amazing progress of state-of-the-art NLP methods 
has opened up new opportunities for nuclear domain 
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researchers to leverage powerful language models. Models 
like BERT [2] have shown significant improvement in NLP 
benchmarking metrics, such as the General Language Un-
derstanding Evaluation (GLUE) benchmark [3]. These 
benchmark metrics evaluate a language model’s ability to 
perform a variety of tasks that resemble human ability to 
comprehend and be language literate. Though undoubted-
ly one element of BERT’s success is its large architecture 
of stacked Transformers [4], another is the widespread use 
of transfer learning: pre-training on one task then fine-tun-
ing on another. By pre-training on general-purpose corpo-
ra, a model has a strong foundation when approaching 
particular benchmark tasks.

There is also evidence that the performance of pre-trained 
language models on some tasks can be improved even 
further by domain-adaptive pre-training [5]—that is, starting 
with a model pre-trained on general-purpose corpora, then 
continuing the pre-training process on a corpus that is 
more representative of the domain of interest.

Given the recent success of large, Transformer-based neu-
ral network architectures and domain-adaptive pre-training, 
as well as the need for nuclear-“aware” NLP models, we 
have developed NukeLM, a language model trained on nu-
clear-relevant research that performs best on nuclear-rele-
vant downstream tasks.

2. Related Work

A number of scientific and computational advances in re-
cent years have led to significant improvements in the per-
formance of computational models for natural language in-
ference and understanding. Notable among these is the 
field of transfer learning, using pre-trained models for 
downstream tasks perhaps markedly different from their 
original tasks. Often, this takes the form of semi-supervised 
learning, where a model is trained on un-labeled data using 
a self-supervised task, then fine-tuned on a supervised 
task in the same domain.

Word embeddings (e.g., word2vec [6], GloVe [7], fastText 
[8]) learn a projection from the high-dimensional vocabulary 
space of a corpus of texts into a much smaller vector 
space using self-supervised training tasks like predicting 
nearby words. A key drawback of this approach is that 
each word is associated with a single vector, regardless of 
context.

A number of approaches have been proposed to learn 
contextualized word embeddings. For instance, ELMo [9] 
trains separate forward- and backward-oriented models for 
next-word prediction, then learns linear combinations of the 
deep representations for downstream tasks. In contrast, 
BERT [2] learns to encode context from both left and right 
at once using a very large architecture of stacked Trans-
formers [4], pre-training with both a word prediction task 

(masked language modeling, MLM) and a task to predict 
whether a given sample follows another in the original text, 
relative to being chosen randomly from the corpus (next-
sentence prediction, NSP).

RoBERTa [10] leverages the same Transformer-based ar-
chitecture as BERT, but shows improvements on down-
stream tasks with some changes to its pre-training strate-
gy: it removes the NSP objective, pre-training only with 
MLM; it allow samples to cross document boundaries in 
pre-training, ensuring all pre-training samples are as long 
as possible; it determines which tokens to predict in each 
batch rather than deciding offline, before training; it uses 
much larger batch sizes; it uses byte-level tokenization in-
stead of character-level; and finally, it considers much more 
pre-training data, including those from the Common Crawl 
corpora.

SciBERT [11] clones BERT’s stacked Transformer architec-
ture and pre-training methodology but replaces the BERT 
training corpus with a large, multi-domain corpus of scien-
tific publications. This results in better performance on sci-
entific domain tasks because of the better match between 
the domains of pre-training and fine-tuning tasks.

In contrast to training a domain-specific model from 
scratch like SciBERT, Gururangan et al. [5] demonstrate 
that continued pre-training of a general-purpose language 
model on in-domain text (called domain-adaptive pre-train-
ing, DAPT) can lead to improved performance on down-
stream tasks, but that continued pre-training on out-of-do-
main text can worsen performance. They explore several 
ways to bootstrap a targeted continued-pre-training corpus 
and explore the tradeoff between performance and com-
putational expense.

Similarly, several domain-specific models have been pro-
posed that continue pre-training from a BERT checkpoint. 
BioBERT [12] continues pre-training on biomedical corpora. 
NukeBERT [13] continues pre-training on a nuclear-domain 
corpus, with the addition of newly initialized vocabulary en-
tries specific to the nuclear domain. However, in contrast to 
NukeLM, the pre-training corpus for the NukeBERT model 
was generated from a relatively small corpus consisting of 
about 7000 internal reports from the Indira Gandhi Centre 
for Atomic Research, largely focused on fast breeder reac-
tors; the NukeBERT language model is somewhat narrowly 
focused on nuclear reactor research for power generation 
rather than defining topics broadly associated with the nu-
clear fuel cycle. Furthermore, it is not clear if the NukeBERT 
language model is publicly available, and the associated 
dataset is not available under a standard open-source 
license.
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3. Data

We consider scientific abstracts from the U. S. Department 
of Energy Office (DOE) Scientific and Technical Information 
(OSTI) database [14] obtained in November 2018, amount-
ing to nearly two million abstracts from over 70 years of re-
search results from DOE and its predecessor agencies. No 
pre-processing is performed on these abstracts; they are 
analyzed as they appear in the database.

For fine-tuning, we consider only abstracts labeled with a 
subject category. The possible categories are formalized by 
OSTI, and all products submitted to OSTI are encouraged 
to provide at least one, listing the primary category first. If 
more than one category is specified, we consider only the 
first. In addition to the multi-class labels induced by the 
OSTI subject categories, we formulate binary labels by 
identifying OSTI subject categories that correspond to the 
top level of the IAEA Physical Model [15], which describes 
acquisition pathways. The topics described in the IAEA 
Physical Model include ore mining and milling, pre-conver-
sion, uranium enrichment, post-conversion, fuel fabrication, 
nuclear reactors, heavy water production, and reprocess-
ing of irradiated fuels. Using this criterion, the following 
OSTI topic categories are considered related to the nuclear 
fuel cycle for the binary classifier: nuclear fuels, isotope and 
radiation sources, nuclear fuel cycle and fuel materials, 
management of radioactive and nonradioactive wastes 
from nuclear facilities, specific nuclear reactors and associ-
ated plants, general studies of nuclear reactors, radiation 
chemistry, instruments related to nuclear science and tech-
nology, and nuclear physics and radiation physics. These 
categories are all assigned to the positive class in the bina-
ry classification problem (“NFC-related”, referring to the nu-
clear fuel cycle [NFC]), regardless of the step or steps of the 
Physical Model to which they correspond. The list of all 
OSTI categories and their binary categorization designation 
is provided in Appendix A.

4. Experimental Setup

We begin with pre-trained checkpoints implemented in 
HuggingFace’s transformers framework [16], available from 
the HuggingFace model database with the   following   
slugs: roberta-base and roberta-large are base and large 
versions of the RoBERTa model, respectively, and allenai/
scibert_scivocab_uncased is the recommended uncased 
version (i.e., inputs are converted to lower case) of 
SciBERT.

Following Gururangan et al. [5], we perform domain-adap-
tive pre-training. We continue pre-training all three models, 
SciBERT, RoBERTa Base, and RoBERTa Large, on 80% of 
the OSTI abstracts. For the remainder of this manuscript, 
we use the naming convention NukeLM to define RoBERTa 
Large with continued pre-training on OSTI abstracts. The 
remaining 20% of documents are held out from the 

pre-training process and split evenly into two data sets 
(200 K each) to be used for fine-tuning and testing the clas-
sification models. When forming each batch, 512-token 
segments are taken irrespective of document boundaries, 
and 15% of the tokens are masked for prediction. We train 
for 13 K steps with a batch size of 256, for a total of 3.3 M 
samples consisting of 1.7 B tokens (similar in size to the 
corpora in Gururangan et al. [5]). Other hyperparameters 
follow Gururangan et al. [5].

We perform some exploratory analysis of the impact of do-
main-adaptive pre-training on OSTI abstracts, including 
performance metrics and an example of masked word 
modeling.

For fine-tuning, we begin with the six models described 
above: RoBERTa Base and Large and SciBERT, both with 
and without OSTI domain-adaptive pre-training. We then 
follow Gururangan et al. [5] by passing the final layer [CLS] 
token representation to a task-specific fully connected layer 
for prediction (see the transformers documentation for de-
tails). A validation set is held out, consisting of 10% of the 
overall fine-tuning set.

We consider two tasks: multi-class prediction over the orig-
inal OSTI subject categories, and binary prediction over the 
relevance of an abstract’s subject category to one of the 
steps of the nuclear fuel cycle. The fine-tuning data set 
consisted of 198,564 documents, of which 23,268 are re-
lated to the nuclear fuel cycle according to our definition.

A small hyperparameter search is performed on the binary 
task (details in Appendix B), selecting a learning rate of 10-5 

and a batch size of 64. We train for five epochs (14.7 K 
steps), evaluating at 20 checkpoints (about every 750 steps) 
and saving the best model according to loss on the valida-
tion set. Other hyperparameters follow Gururangan et al. [5].

5. Results of the Language Modelling Task

5.1 Metrics

The MLM task is evaluated based on the categorical cross-
entropy between the one-hot true distribution over a mod-
el’s vocabulary and a model’s predicted distribution. This 
MLM loss is shown before and after domain-adaptive pre-
training for each of the three baseline models in Table 1. As 
in RoBERTa-style pre-training, one token per sample is 
masked randomly, without consideration of sub-word sta-
tus, stop words, or other factors.

Continued pre-training improves the performance of RoB-
ERTa Base more than that of SciBERT, to the point where it 
performs better than the much larger RoBERTa without 
continued pre-training. The RoBERTa pre-training strate-
gies may have yielded an easier-to-train model than the 
SciBERT methodologies, but this may be due solely to the 
larger vocabulary size, 50 K tokens for RoBERTa vs. 30 K 
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for SciBERT. Regardless, NukeLM shows improvement 
over RoBERTa Large, and remains the most accurate of 
the models.

Model MLM Loss
RoBERTa Base 1.39
RoBERTa Base + OSTI 1.11
RoBERTa Large 1.13
NukeLM 0.95
SciBERT 1.34
SciBERT + OSTI 1.18

Table 1: Masked language modeling loss, based on categorical 
cross-entropy between true and predicted probability distributions, 
on the evaluation sub-set of the OSTI pre-training data. Lower is 
better. The symbol “+ OSTI” denotes continued pre-training on 
OSTI abstracts. The best performing model is in bold.

Model Top-5 Predictions Score
RoBERTa Base metal 0.252

metals 0.149

uranium 0.145

water 0.130

iron 0.026

RoBERTa Base + 
OSTI

water 0.955

metal 0.008

elements 0.008

metals 0.008

oil 0.003

RoBERTa Large water 0.951

metal 0.013

metals 0.011

fuel 0.004

carbon 0.002

NukeLM water 0.996

metals 0.001

oil 0.001

#water <0.001

metal <0.001

SciBERT metal 0.225

metals 0.117

water 0.068

iron 0.052

argon 0.042

SciBERT + OSTI water 0.929

metal 0.024

metals 0.011

iron 0.003

oil 0.003

Table 2: An example of masked language modeling. Column 2 
contains the top five tokens considered most likely (the true token, 
“water”, is in bold), and column 3 contains the associated 
likelihood scores (the highest confidence for the true token is also 
in bold). The character “#” indicates the token is a sub-word, i.e., 
a prediction of “heavywater” rather than “heavy water”. The symbol 
“+ OSTI” denotes continued pre-training on OSTI abstracts.

5.2 MLM Example

We present an example of masked language modeling to il-
lustrate the task and performance improvement after do-
main-adaptive pre-training. The bolded word is masked, 
and the models are asked to predict what word should fill 
in the blank.

The use of heavy water as the moderator is the 
key to the PHWR system, enabling the use of 
natural uranium as the fuel (in the form of 
ceramic UO2), which means that it can be 
operated without expensive uranium enrichment 
facilities. [17]

Table 2 summarizes the top five predicted tokens and their 
associated likelihood score from each of the six models af-
ter domain-adaptive pre-training (if any) but before fine-tun-
ing. Before continued pre-training, all three models include 
the correct answer in their top five predictions, but RoBER-
Ta Base and SciBERT predict the more common but incor-
rect phrase “heavy metal,” albeit with low confidence; only 
RoBERTa Large predicts the correct answer, evidence that 
its large size allowed it to learn from pre-training alone 
some subtleties of the nuclear domain that the smaller 
models did not. After continued pre-training, all three mod-
els regardless of size succeed in predicting the correct an-
swer with high confidence.

6. Results of Downstream Tasks

6.1 Multi-Class Classification

The results of fine-tuning of the multi-class classification 
task are presented in Table 3. SciBERT’s advantage over 
RoBERTa Base persists after domain-adaptive pre-training, 
perhaps because its scientific-domain pre-training corpora 
are more closely related to the OSTI task than are RoBER-
Ta’s. However, neither overcomes RoBERTa Large even 
without the added advantage of continued pre-training, 
likely because the latter contains several times more traina-
ble parameters.

Model Accuracy Precision Recall F1-Score
RoBERTa 
Base

0.6745 0.6564 0.6745 0.6603

RoBERTa 
Base + OSTI

0.6972 0.6884 0.6972 0.6863

RoBERTa 
Large

0.7056 0.7008 0.7056 0.7013

NukeLM 0.7201 0.7164 0.7201 0.7168

SciBERT 0.6972 0.6866 0.6972 0.6883

SciBERT + 
OSTI

0.7047 0.6981 0.7047 0.6973

Table 3: Results of fine-tuning on the multi-class classification 
task. Precision, Recall, and F1-scores are an average of all classes, 
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weighted by class size. The best performing model by each metric 
is presented in bold.

6.2 Binary Classification

The results of fine-tuning on the binary classification task 
are presented in Table 4. Without domain-adaptive pre-
training, SciBERT performs even better than RoBERTa 
Large, possibly because of its more closely related pre-
training corpora. However, unlike in the multi-class task, 
both SciBERT and RoBERTa Base see degraded recall 
(and, in the case of SciBERT, accuracy), outweighed by a 
moderate increase in precision only due to class imbal-
ance. Only NukeLM sees improvement across all meas-
ured metrics, likely due again to its large size. It is worth 
noting that the much smaller RoBERTa Base is able to 
achieve performance comparable to the unwieldy RoBER-
Ta Large via continued pre-training, which may be useful in 
resource-constrained applications.

Model Accuracy Precision Recall F1-Score
RoBERTa Base 0.9506 0.7938 0.7816 0.7876

RoBERTa Base 
+ OSTI

0.9544 0.8237 0.7773 0.7998

RoBERTa 
Large

0.9506 0.7995 0.7722 0.7856

NukeLM 0.9573 0.8270 0.8038 0.8152

SciBERT 0.9548 0.8061 0.7910 0.7984

SciBERT + 
OSTI

0.9532 0.8285 0.7747 0.8007

Table 4: Results of fine-tuning on the binary classification task. 
Precision, Recall, and F1-scores consider NFC-related to be the 
positive class. The best performing model by each metric is 
presented in bold.

Moreover, numerically small improvements in performance 
metrics belie the very large size of the datasets presented 
here. An analyst attempting to filter a corpus as large as 
OSTI into a more manageable size would be well-served to 
choose NukeLM over the other models discussed above; a 
single percentage point change could translate to thou-
sands of relevant papers that would have been missed, or 
irrelevant papers requiring manual inspection. Indeed, this 
use-case motivates a preference for recall (the fraction of 
true positives predicted to be positive) over precision (the 
fraction of predicted positives which are truly positive), fur-
ther widening NukeLM’s advantage over its competitors in 
our quantitative assessments.

6.3 Performance under Different Training Set Sizes

One reported advantage of domain-adapted language 
models is the ability to fine-tune on smaller numbers of la-
beled examples. We test this ability with the binary classifi-
cation task described above. We randomly select increas-
ingly large proportions of the binary classif ication 
fine-tuning set, ignoring the rest, so that each larger subset 
contains the earlier, smaller subsets. We train the off-the-
shelf RoBERTa Large and NukeLM with the same experi-
mental set-up as in Section 6.2 and track the log-loss com-
puted on the hold-out evaluation set. This metric is 
computed via the Kullback-Leibler divergence, a measure 
of dissimilarity between the true and predicted probability 
distributions over the output categories, averaged over the 
test set. Twenty repetitions with different random seeds are 
performed. For visual convenience, the probability density 
function of each of these sets of repetitions is estimated us-
ing the kernel density estimation technique, analogous to a 
smoothed histogram. Generally, lower log-loss indicates 
better predictions, and greater separation of distribution 

Figure 1: Binary classification performance, measured by log-loss on a hold-out test set, as the training set size is increased, for RoBERTa 
Large (orange) and NukeLM (blue). Hash marks are each of 20 repetitions with different random seeds, while filled areas are kernel density 
estimations.
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density indicates more significant differences. Figure 1 
summarizes the results.

While Table 4 summarizes some performance metrics of 
NukeLM compared to other models on the full fine-tuning 
data set for the binary classification task, this experiment 
provides insight into the potential benefit of using NukeLM 
on other fine-tuning tasks where the amount of labeled 
training data is likely to be on the order of one thousand 
and not one hundred thousand. The domain-adapted mod-
el achieves significantly better performance with smaller 
amounts of data; however, this advantage shrinks as the 
fine-tuning set size increases. This could be the result of 
continued pre-training priming the model for performance 
in this domain. 

Therefore, the question of significance between NukeLM 
and other models is best understood as a function of fine-
tuning training set size. Moreover, Figure 1 shows that even 
though the performance gain decreases with increasing 
amount of fine-tuning data, we still observe superior perfor-
mance using NukeLM with a fine-tuning set of nearly two 
hundred thousand documents.

Interestingly, the disparity between models is less apparent 
at the lowest training set size tested (0.4% of the full cor-
pus, or 754 documents). While NukeLM maintains its supe-
riority, with so few examples used for fine-tuning, significant 
instability is observed over the repetitions. A follow-up ex-
periment implements several strategies for stabilizing fine-
tuning of large language models discussed in Zhang, et al. 
[18], but none have a major impact (see Appendix C for de-
tails) and are not employed further.

6.4 Qualitative Assessment

Beyond model performance on the MLM task and docu-
ment classification, an important question regarding these 
trained language models is whether any reasonable inter-
pretation can be made of the intermediate representations 
of input examples. While there is not a clear consensus on 
how useful these embeddings can be in providing explana-
tions, with arguments from both sides [19, 20], there is un-
doubtedly some information contained within these trans-
former-based language models because their predictive 
ability is state-of-the-art. So, while a direct interpretation of 
an embedding produced by NukeLM may be questionable, 
the transformation of this high-dimensional space that re-
sults from pre-training should provide some explanation as 
to how prediction was improved.

As a first step toward interpreting the impact of domain-
adaptive pre-training, we consider models fine-tuned on 
the binary classification task and visualize output embed-
dings from the most accurate models, RoBERTa Large 
both with (i.e., NukeLM) and without continued pre-training 
on OSTI abstracts. We use uniform manifold approximation 

and projection (UMAP) [21] with all default parameters to 
project the output corresponding to the special token [CLS] 
down to two dimensions, training separate UMAP projec-
tions for each model. Figure 2 (top row) depicts the result of 
this process performed on a 1000-sample random subset 
of the binary classification task validation set.

In both models, the positive class is generally clustered to-
gether; indeed, both models are able to learn relatively ac-
curate decision boundaries. However, in the version with-
out domain-adaptive pre-training, the cluster looks like a 
single manifold, eventually connecting to the mass of nega-
tive samples like an isthmus. In contrast, continued pre-
training appears to encourage the model to form more 
complicated structures, with an isolated cluster of mostly 
positive samples in addition to a similar but much smaller 
isthmus connected to a large mass of negative samples.

To explore these differences further, we apply BERTopic 
[22], a clustering and topic modeling approach for under-
standing the output embeddings of a transformer model. 
BERTopic also uses a UMAP projection for dimension re-
duction, in this case to 100 dimensions, but then uses hier-
archical density-based spatial clustering of applications 
with noise (HDBSCAN) [23] to cluster documents and a 
class-based TF-IDF (cb-TF-IDF) score for topic modeling. 
TF-IDF stands for term frequency and inverse document 
frequency, a standard method for identifying terms used 
unusually frequently in each document. Here, all docu-
ments within the same cluster are concatenated into a sin-
gle document and then the usual TF-IDF score [24] is com-
puted as follows:

where ti is the frequency of each word in class i, wi is the 
total number of words in class i, m is the number of docu-
ments, and n is the number of classes.

We visualize the BERTopic clusters found in the RoBERTa 
Large binary classification models in Figure 2 (bottom row). 
Recall that the clustering algorithm is applied to the em-
beddings after reducing their dimension to 100; visual in-
spection of the 2-dimensional representation may not fully 
reflect the shape of the BERtopic clusters. The three words 
most representative of each cluster, as determined by the 
cb-TF-IDF model, are listed in Table 5. Without continued 
pre-training, we see seven clusters on a variety of topics, 
from cosmology to biology, with the NFC-related samples 
mostly relegated to a single nuclear cluster or left as outli-
ers. In contrast, with continued pre-training, non-NFC sam-
ples are labeled outliers and nuclear documents are sorted 
into four topics. This provides evidence that continued pre-
training taught the model additional knowledge of the nu-
clear domain, allowing it to characterize different subsets of 
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Figure 2: Visualization of UMAP-transformed output embeddings from RoBERTa Large for 1000 randomly sampled documents from the 
validation set after fine-tuning on the binary classification task, both without (left) and with (right) domain-adaptive pre-training on OSTI 
abstracts, colored by the true binary labels (top) and BERTopic clusters (bottom). Note that the cluster labels for RoBERTa Large and for 
NukeLM refer to different document clusters with correspondingly different topics, though they use the same colors. Each point in these 
plots is a low-dimensional representation of the embedding for a document’s abstract.

Model No. Top-3 Words
RoBERTa Large 1 beam, ion, states

2 coal, fuel, oil

3 films, alloy, materials

4 waste, nuclear, radiation

5 cells, protein, cell

6 soil, acid, conduit

7 dust, galaxies, observations

NukeLM 1 waste, safety, SAR

2 reactor, waste, fuel

3 MeV, nuclei, energies

4 Scattering, interaction, generation

Table 5: Top three representative words for each BERTopic cluster of output embeddings from RoBERTa Large for 1000 randomly 
sampled documents from the validation set after fine-tuning on the binary classification task, both without and with (i.e. NukeLM) 
domain-adaptive pre-training on OSTI abstracts. Column two, the cluster number, corresponds with the legend in Figure 2 (bottom row).
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positive examples, and recognize the irrelevance of other 
distinctions to the fine-tuning task.

7. Conclusion and Future Work

In this work, we leveraged abstracts from the OSTI data-
base to train state-of-the-art language models for nuclear-
domain-specific classification tasks and as a general-pur-
pose language model in the nuclear domain. We explored 
a number of base models for transfer learning and applied 
domain-adaptive pre-training to improve performance on 
the down-stream tasks. To the best performing model in 
this process, RoBERTa Large + OSTI, we apply the name 
NukeLM.

We consider the NukeLM language model to be a general-
purpose resource for supporting development of NLP 
models in the nuclear domain. The NukeLM model can be 
leveraged for task training on relatively small labeled data 
sets, making it feasible to manually label training for target-
ed objectives and easily fine-tune the NukeLM model for 
various tasks. As an example, we introduced a binary cate-
gorization of the OSTI subject categories aimed at identify-
ing documents related to the nuclear fuel cycle and fine-
tuned the NukeLM model on this task. This fine-tuned 
classification model can be immediately useful to prioritize 
information or to support NLP workflows in nuclear science 
or nuclear nonproliferation.

The NukeLM binary classification model demonstrated su-
perior performance for the classification task. Because of 
computational constraints, multiple runs of the training pro-
cess were not made to establish the statistical significance 
of the classification metrics, but the large set of training 
data and consistent trends across model types and tasks 
make it unlikely that the rank order of these models would 
change with resampling and retraining. Furthermore, we 
demonstrate that the performance gain may be even higher 
with smaller-scale fine-tuning sets.

Although the performance gains observed were minor, the 
whole story does not lie within the F1-score because our 
qualitative visual assessment of the NukeLM binary classifi-
cation embeddings reveal intriguing structural differences. 
The NukeLM embeddings appear to have more distinct 
clusters and increased separation among clusters, particu-
larly among NFC-related documents. By applying BERTop-
ic to these embeddings, we confirmed that these clusters 
correspond to identifiable topics. Potential future work 
would be needed to quantify these structural changes and 
assess differences among various models, as an in-road 
toward explaining how the models reach their conclusions.

Additional topics for future work involve expanding the 
model training pipeline to include full article text and data 
sets other than OSTI. We will consider expanding the mod-
el vocabulary to better capture a nuclear domain 

vocabulary without losing RoBERTa’s more robust pre-
training, and exploring multilingual capabilities via models 
like XLM-RoBERTa [25].
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Appendix A: OSTI Subject Categories

Label Description NFC Label Description NFC

1 Coal, Lignite, and Peat 44

2 Petroleum 45 Military Technology, Weaponry, and National 
Defense

3 Natural Gas

4 Oil Shales and Tar Sands

5 Nuclear Fuels Y 46 Instrumentation Related To Nuclear Science 
and Technology

Y

7 Isotope and Radiation Sources Y

8 Hydrogen 47 Other Instrumentation

9 Biomass Fuels 54 Environmental Sciences

10 Synthetic Fuels 55

11 Nuclear Fuel Cycle  
and Fuel Materials

Y 56 Biology and Medicine

57

12 Management of Radioactive and Non-Radioac-
tive Wastes From Nuclear Facilities

Y 58 Geosciences

59 Basic Biological Sciences

13 Hydro Energy 60 Applied Life Sciences

14 Solar Energy 61 Radiation Protection and Dosimetry

15 Geothermal Energy

16 Tidal and Wave Power 62 Radiology and Nuclear Medicine

17 Wind Energy

20 Fossil-Fueled Power Plants 63 Radiation, Thermal, and Other Environ. 
Pollutant Effects On Living Orgs. and Biol. 
Mat.21 Specific Nuclear Reactors and Associated Plants Y

22 General Studies of Nuclear Reactors Y 66 Physics

70 Plasma Physics and Fusion Technology24 Power Transmission and Distribution

25 Energy Storage 71 Classical and Quantum Mechanics, General 
Physics

29 Energy Planning, Policy, and Economy
72 Physics Of Elementary Particles and Fields

30 Direct Energy Conversion

32 Energy Conservation, Consumption, and 
Utilization

73 Nuclear Physics and Radiation Physics Y

33 Advanced Propulsion Systems 74 Atomic and Molecular Physics

35 Arms Control 75 Condensed Matter Physics Superconduc-
tivity and Superfluidity

36 Material Science

37 Inorganic, Organic, Physical and Analytical 
Chemistry

77 Nanoscience and Nanotechnology

38 Radiation Chemistry, Y 79 Astronomy and Astrophysics

Radiochemistry, and 96 Knowledge Management and Preservation

Nuclear Chemistry

39 97 Mathematics and Computing

40 Chemistry 98 Nuclear Disarmament, Safeguards, and 
Physical Protection

42 Engineering

43 Particle Accelerators 99 General and Miscellaneous

Table 6: List of OSTI subject category labels, their description where available, and whether they related directly to the nuclear fuel cycle.
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does not appear to hold true here: longer training has the 
opposite effect, and though re-initializing three or four lay-
ers may result in a smaller range with three training epochs, 
the effect mostly reduces the incidence of outliers, so-
called “failed runs”, rather than making most runs more 
predictable. Therefore, we do not employ either technique 
in the main body of this manuscript.

Figure 3: Results of a hyperparameter tuning experiment for 
number of training epochs (horizontal axis) and number of 
reinitialized layers (color), with log-loss shown on the vertical axis. 
Hash marks are each of 20 repetitions with different random 
seeds, while filled areas are kernel density estimations.

Appendix B: Hyperparameter Tuning

A hyperparameter tuning experiment is performed on the 
binary classification task using RoBERTa Large, both with 
and without domain-adaptive pre-training. We perform a 
grid search over maximum learning rates of 1×10-5, 2×10-5, 
and  5×10-5 and minibatch sizes of 16 and 64. Results on 
the validation set are summarized in Table 7. Both with and 
without continued pre-training, a small learning rate and 
large batch size yield the best loss, though the impact on 
accuracy and F1-score is both smaller and less clear.

Appendix C: Stabilizing Few-Shot Fine-Tuning

A further hyperparameter tuning experiment is performed 
on the binary classification task using RoBERTa Large, 
both with and without domain-adaptive pre-training, and 
restricted to only 0.4% of the training set (754 documents). 
Following Zhang, et al. [18], we perform a grid search over 
the number of training epochs (3, 6, 12, and 24) and over 
the number of layers to reinitialize (0 through 6). The layers 
are chosen from the bottom of the model, nearest the final 
classification layer, which is always newly initialized. Twenty 
repetitions with different random seeds are performed. Re-
sults on the validation set are summarized in Figure 3, us-
ing the same metrics and techniques as in Figure 2.

Zhang, et al. [18], suggests that more training epochs and 
reinitializing several layers often stabilizes fine-tuning on 
very small datasets, narrowing the range of results. That 

Model Learning 
Rate

Batch Size Accuracy F1-Score Loss

RoBERTa Large
1 × 10-5

16 0.9545 0.9537 0.1173

64 0.9506 0.9502 0.1081

2 ×1 0-5
16 0.9397 0.9409 0.1568

64 0.9524 0.9523 0.1118

5 × 10-5
16 0.9206 0.9097 0.2260

64 0.9363 0.9338 0.1699

RoBERTa Large + OSTI
1 × 10-5

16 0.9573 0.9568 0.1127

64 0.9573 0.9570 0.0967

2 × 10-5
16 0.9520 0.9516 0.1340

64 0.9557 0.9559 0.0977

5 × 10-5
16 0.9328 0.9279 0.2093

64 0.9525 0.9518 0.1108

Table 7: Results of a hyperparameter tuning experiment for learning rate and minibatch size. F1-scores consider NFC-related to be the 
positive class. The best result for each run is bolded.




