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Dear ESARDA Bulletin readers,

I am honored to be writing to you as the Guest Editor for 
this special topical issue of the ESARDA Bulletin on Data 
Analytics for International Nuclear Safeguards and 
Non-Proliferation.

The human brain has incredible propensity to recognize 
patterns, identify differences between two scenes, track 
moving objects through space, summarize themes or ide-
as, and generalize knowledge after observing few exam-
ples. For example, even very young children can recognize 
a live giraffe at a zoo, a stuffed animal of a giraffe, and a 
cartoon drawing of a giraffe from only having seen an im-
age in a book. Our brains are constantly analyzing the 
massive amounts of data that they collect. As more and 
more data become available to us, as is the case in nucle-
ar safeguards and non-proliferation, we are less able to 
process it and complete the functions described above. 
Our working memory is simply too limited. 

Data analytics and business intelligence help us to sum-
marize data into human-interpretable formats that we can 
better understand and act upon. New methods are emerg-
ing that further remove humans from the processing of the 
data – with deep learning, unsupervised approaches, and 
data tensors hundreds of vectors large. In this special is-
sue, we explore the potential impacts of data analytics 
methods on nuclear safeguards and non-proliferation. 

In May 2019, over 200 people participated in a World Café1 
exercise at the ESARDA Symposium held in Stresa, Italy. 
In the World Café, participants brainstormed their wishes, 
challenges, and actions regarding ten topics that had been 
defined by the ESARDA Reflections Group Report in 2019. 
Two of the topics addressed in the World Café were direct-
ly related to data analytics and have direct relevance to 
this special issue.  

The first data analytics topic was Remote Data Transfer 
and Artificial Intelligence (AI). Remote data transfer and AI 
was included for its potential to optimize inspection re-
sources by developing and implementing the remote 

transfer of data combined with machine learning and artifi-
cial intelligence techniques. The wishes and challenges are 
too numerous to fully describe here, but there were several 
actions defined that seem to call directly for an issue of the 
Bulletin such as this one. I have paraphrased them below, 
with commentary in italics about the role of this special is-
sue in meeting these calls to action:

•	Adapt tools that have been developed and proven in 
other domains to nuclear safeguards and non-prolifera-
tion-relevant datasets.  In this special issue, we the ap-
proaches described have all been demonstrated, at least 
in part, in other domains and have been combined or 
tailored specifically for the specific safeguards and non-
proliferation data challenges here. 

•	Initiate research projects that prove the feasibility of data 
analytics techniques for safeguards and non-prolifera-
tion, without the requirement to prove generalizability for 
the full spectrum of safeguards problems. The four re-
search papers included in this special issue each dem-
onstrates capability for a specific safeguards and non-
proliferation challenge. We can anticipate that future 
solutions will proceed in similar ways, providing proof-of-
concept feasibility for specific challenges with custom-
ized analytical approaches. 

•	Inform and educate [the nuclear non-proliferation and 
safeguards research community and our stakeholders 
about the state-of-research, results, and implications] to 
overcome reluctance. It is my intention with this special 
issue, as well as future publications within the Bulletin 
that will focus on data analytics, that we can more 
broadly reach stakeholders in the operational sectors of 
nuclear nonproliferation and safeguards, including the 
International Atomic Energy Agency, Euratom, and oth-
ers working at the regional and national levels to share 
capabilities in this areas specifically focused on nuclear 
nonprolfieration and safeguards, including the challeng-
es, opportunities, data, etc.  

Editorial
Zoe Gastelum

1 � The World Café report is available here:  
https://esarda.jrc.ec.europa.eu/world-cafe-report-2019_en
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The second topic related to data analytics was business 
intelligence. Business intelligence was identified by the 
World Café in its opportunity for “mapping, storing, pre-
senting [and] analysing safeguards-relevant data” via inter-
connected safeguards databases and the use of geo-
graphic information systems and visualization tools. Like 
the remote data analysis and AI topic, the business intelli-
gence topics contained several actions highly relevant for 
this special issue, again paraphrased with ties to this spe-
cial issue detailed in italics:

•	Make the user community and other stakeholders aware 
of what business intelligence tools and capabilities are 
available, and what business intelligence might enable 
for their needs. Similar to the bullet under Remote Data 
Transfer and AI on engagement and knowledge sharing, 
this special issue is intended to meet this need. Though 
there are ESARDA members working in this area, we did 
not receive any full manuscripts related to business intel-
ligence and hope that this is a topic that will be covered 
in future Bulletin issues, as well as continued publica-
tions in other forums including the ESARDA Symposium 
Proceedings and shared via ESARDA Working Group 
meetings. 

•	Engage and attract experts from the data analytics com-
munity in nuclear non-proliferation and safeguards in ES-
ARDA activities, via events and publications. We also 
see authors from the data analytics community publish-
ing here in ESARDA for the first time, in cooperation with 
safeguards authors.

In this issue, we have representation from three exciting 
topic areas within the domain of data analytics for nuclear 
non-proliferation and safeguards. First, we have a research 
paper from the SCK-CEN Belgian Nuclear Research Cen-
tre on the use of machine learning to predict isotopics, 
burn up, and cooling time of spent nuclear fuel which 
could significantly improve how spent fuel is verified in 
cooling ponds. Then, we transition to multi-model machine 
learning approaches from Sandia National Laboratories 
and Pacific Northwest National Laboratory to detect nu-
clear material diversion in reprocessing facilities – a meth-
odology that will potentially decrease the need for expen-
sive and time-consuming destructive assay. Then, we 
transition to two papers that use natural language process 
(NLP) to support nuclear non-proliferation analysis. In the 
first, from Pacific Northwest National Laboratory and North 
Carolina State University, researchers compared methods 
of pre-training and fine-tuning language models in order to 
classify scientific publications using both a binary classifier 
to determine relevance to the nuclear fuel cycle, and a 
multi-class classifier to associate the papers with stages of 
the nuclear fuel cycle, which has the potential to enhance 
how analysts prioritize and triage publication review. In a 

second NLP paper from Pacific Northwest National Labo-
ratory, the authors developed a question-and-answer sys-
tem that was calibrated to nuclear nonproliferation topics 
and introduced a novel methodology for auditing question-
and-answer capability that could enhance how nonprolif-
eration analysts interact with large databases of stored his-
torical data. 

A friend of mine recently wrote a piece regarding the use 
of data analytics to support defense missions, in which 
she said “You go to war with the data you have,” making a 
play on words of former U.S. Secretary of Defense Donald 
Rumsfeld’s saying “You go to war with the troops you 
have.” While our domain is certainly far from war, nuclear 
safeguards and non-proliferation verification represents a 
prominent task impacting international security. I wonder if 
we might say “In nuclear safeguards, you go on inspection 
with the data you have.” While collection of more data is 
possible under safeguards agreements – letter are written, 
follow-up visits are taken, additional overhead imagery is 
purchased and analyzed, etc. – fundamentally, the types 
of data that we have available are not changing. They may 
be increasing in number as more significant quantities of 
nuclear material are added to safeguards over time, and 
they may become more frequent as states and operators 
recognize the potential for sharing remote monitoring data 
with the IAEA as an avenue to decrease in-person inspec-
tions. In the absence of significant budget increases or 
fundamental changes in scope regarding how safeguards 
are verified, we need to better exploit our existing data us-
ing data analytics and business intelligence methods to 
answer the recurring calls for increased effectiveness and 
efficiency.

I thank Bulletin Editors for the opportunity to guest edit this 
special issue on data analytics – an opportunity that I have 
long desired and was especially enthusiastic to undertake 
now that the Bulletin is indexed in SCOPUS. I also thank 
the members of the ESARDA Verification Technologies 
and Methodologies especially, for their contributions, for 
their reviews, and for their support of this activity. And 
deepest thanks to the authors, peer reviewers, and Editors 
team for the significant effort that goes into all Bulletin 
issues.  

Sincerely,

Zoe Gastelum

Chair, ESARDA Verification Technologies  
and Methodologies Working Group 

zgastel@sandia.gov 
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Inferring initial enrichment, burnup, and cooling time of 
spent fuel assemblies using artificial neural networks
Riccardo Rossa, Alessandro Borella

SCK CEN Belgian Nuclear Research Centre
Boeretang 200, Mol 2400 Belgium
E-mail: rrossa@sckcen.be 

Abstract

The verification of spent nuclear fuel is a major task during 
a safeguards inspection and inspectors have to verify both 
the correctness and completeness of the operator 
declaration. The traditional way to verify spent fuel is with 
non-destructive assays (NDA) relying on the radiation 
emission from the fuel. The NDA measurement results are 
then compared with estimates based on operator 
declaration of initial enrichment, burnup, and cooling time.

However, the radiation emission from spent fuel is affected 
by the fuel parameters and irradiation history, and research 
is ongoing to improve the data analysis of NDA 
measurement results. In this work artificial neural networks 
were developed to infer the initial enrichment, burnup, and 
cooling time of spent fuel assemblies from simulated NDA 
measurements with the Forkball instrument.

Several neural networks architectures and detector 
responses were compared to find the optimal network 
configuration to infer the spent fuel parameters. Results 
show that the cooling time is the most challenging 
parameter to estimate and the associated data processing 
step plays a crucial role in its reliable estimate. The 
combination of multiple detector responses also leads to a 
significant improvement in the determination of the initial 
enrichment, burnup, and cooling time. The optimal neural 
networks in this study are able to determine the initial 
enrichment and burnup within 12%, and the cooling time, 
using the data processing step, within 4%.

Keywords: neural networks; machine learning; spent fuel; 
NDA; initial enrichment; burnup; cooling time

1.	 Introduction

The International Atomic Energy Agency (IAEA) has the le-
gal mandate under the Non-Proliferation Treaty (NPT) [1] to 
verify the nuclear material inventory in the States party to 
the treaty. In 2020 safeguards were applied in 183 coun-
tries and in more than 700 facilities [2]. Nuclear power re-
actors represent a significant share of the facilities under 
safeguards, and most of the fissile material inventory is in 
the form of irradiated or spent fuel.

The goal of a safeguards inspection is to verify both the 
correctness and completeness of the declaration given by 
the operator to the IAEA. In the case of spent fuel verifica-
tion, non-destructive assay (NDA) is generally used to 
measure the radiation emitted by spent fuel. The Digital 
Cherenkov Viewing Device (DCVD) and the Fork detector 
are among the most used NDA for spent fuel verification. 
However, these NDA instruments measure mostly emis-
sions due to fission products (e.g. 137Cs) and minor acti-
nides (e.g. 244Cm) since they are the main gamma-ray and 
neutron emitters, respectively [3].

Therefore, to verify the inventory of nuclear material (i.e. 
235U and Pu), the NDA measurement results are compared 
with calculations that rely on operator declarations of fuel 
irradiation history (e.g. initial enrichment, burnup, and cool-
ing time). Recent studies [4] showed that the fuel irradia-
tion history significantly impacts the radiation emission and 
research is ongoing to improve the current data analysis 
approach.

Due to the complexity of the fuel composition and multi-
variate nature of the NDA measurement results, machine 
learning is increasingly applied in the field of spent fuel ver-
ification [5],[6],[7],[8]. Artificial Neural Networks (ANNs) are 
being increasingly chosen for the data analysis of safe-
guards tasks, such as the image analysis and surveillance 
review [9],[10],[11],[12],[13],[14]. In the field of spent fuel veri-
fication, ANNs still have a rather limited application for the 
estimation of the spent fuel parameters [15],[16]. The ANNs 
developed for the different safeguards tasks vary greatly in 
terms of network size and network configuration.

In this work, ANNs were developed using as inputs the de-
tector responses from the Forkball detector [17] with the 
aim of inferring the initial enrichment (IE), burnup (BU), and 
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cooling time (CT) of the spent fuel assembly. A separate 
ANN was developed for each output parameter and differ-
ent ANN architectures were compared in terms of mean 
absolute percentage error.

Previous work [15] published using ANNs for the estima-
tion of spent fuel parameters focused mostly on the train-
ing accuracy and considered small ANNs architectures 
with maximum of 20 neurons per layer. The ANNs present-
ed in this article investigate the effect of data processing of 
the output features and include a detailed discussion on 
the ANNs performance.

The dataset used for the study is introduced in Section 2, 
whereas the ANNs basic principles and architectures are 
described in Section 3. The results from the developed 
ANNs are presented in Section 4 and are followed by dis-
cussion in Section 5. The conclusions from the study are 
summarized in Section 6.

2.	 Dataset

A dataset containing the detector responses from the 
Forkball detector was used for the development of the 
ANNs in this study. The Forkball detector is an NDA instru-
ment being conceived for underwater measurement of 
spent fuel and combines the detector responses of the 
Fork detector (e.g. total neutron count from the fission 
chambers, current from the ionization chambers) with the 
gamma-ray spectroscopic capabilities of a Cadmium Zinc 

Telluride (CZT) detector [17]. The Forkball detector is made 
up of two polyethylene arms each containing one fission 
chamber and one ionization chamber, connected by a 
large Pb shielding and collimator that hosts the CZT de-
tector. During the measurement, the spent fuel assembly 
is placed between the two polyethylene arms as shown in 
Figure 1.

A total of 1960 Monte Carlo simulations were carried out 
with the MCNPX code [18] to compute the Forkball detec-
tor responses for fuel assemblies with a wide range of ini-
tial enrichment, burnup, and cooling time. The approach 
for the calculation of the detector responses is described 
in [15], and an extract of the dataset is shown in Table 1. 
The detector responses were taken as input features of 
the ANNs whereas either the initial enrichment, burnup, or 
cooling time was taken as output feature of the ANNs. The 
initial enrichment ranged from 2.0% to 5.0% in steps of 
0.5%, the burnup ranged from 5 GWd/tHM to 70 GWd/tHM in 
steps of 5 GWd/tHM, and the cooling time ranged from 1 
day to 100 years with 18 intermediate values. Since the 
cooling time values were logarithmically separated, the 
variable CT’ was also considered as output feature

     	 (1)

Figure 1: 2-D view of the Monte Carlo model of the Forkball detector measuring a spent fuel assembly. Figure taken from [6].
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Input features
Output features

Fission chamber
Ionization 
chamber

Cadmium Zinc Telluride

Total 
neutrons 
(cps)

Fast 
neutrons 
(cps)

Current 
(nA)

134Cs, 
605 keV 
(cps)

137Cs, 
662 keV 
(cps)

134Cs, 
796 keV 
(cps)

154Eu, 
1274 
keV 
(cps)

IE 
(%)

BU 
(GWd/t)

CT 
(y)

CT’ 
(ln(y))

1.4 0.6 154.8 85.0 466.4 147.4 4.4 2.0 5 1 10.00

1.2 0.5 12.7 11.3 406.0 19.6 2.7 2.0 5 7 11.95

1.0 0.4 6.5 <0.1 238.8 <0.1 0.3 3.5 5 30 13.40

10.2 4.7 42.1 73.4 1207.4 127.3 17.8 4.0 15 7 11.95

9.9 4.5 5.1 <0.1 186.8 <0.1 <0.1 2.5 20 100 14.61

108.4 49.8 71.9 146.2 1950.4 253.5 49.4 3.5 25 8 12.08

1142.6 524.7 634.4 3060.9 3174.5 5308.4 172.9 2.5 35 1 10.00

110.0 51.5 32.1 <0.1 1166.3 <0.1 3.6 4.5 40 50 13.91

108.4 49.8 71.9 146.2 1950.4 253.5 49.4 3.5 25 8 12.08

1142.6 524.7 634.4 3060.9 3174.5 5308.4 172.9 2.5 35 1 10.00

110 51.5 32.1 0 1166.3 0 3.6 4.5 40 50 13.91

3.	 Artificial neural networks

3.1	 Basic principles

ANNs are a subset of machine learning models that aim to 
replicate with mathematical functions the neurons in a bio-
logical brain. ANNs can be used as universal function 

approximators [19] and are being developed for a wide 
range of applications such as pattern recognition [20], data 
mining [21], and cyber security [22]. In the nuclear field 
ANNs have been used recently for example in gamma-ray 
spectroscopy [23], severe accident analysis [24], and nu-
clear medicine [25]. 

Table 1: Extract of the dataset containing the simulated detector responses of the Forkball (input features) and the corresponding initial 
enrichment (IE), burnup (BU), cooling time (CT), and CT’ (output features). The detector responses included in the table are rounded to 
the first decimal digit.

Figure 2: example of ANN architecture used for this study. The ANN includes all input features, two hidden layers each with 10 neurons, 
and initial enrichment as output variable. The ANN is fully connected but for graphical reasons not all connections among neurons are 
included in the figure.
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The building unit of the ANN is the artificial neuron which, 
as the biological neuron, receives input signals and 
through an activation function and bias produces an out-
put signal [19].

The general structure of an ANN (also called network ar-
chitecture) is shown in Figure 2. The dataset observables 
are first connected to the so-called input layer via a scaling 
function that is usually recommended to improve the mod-
el accuracy and speed of convergence [26]. The input lay-
er is followed by one or more hidden layers and finally by 
an output layer. The output of the output layer may be 
again re-scaled to obtain the desired output variables. 
Neurons in one layer can be either connected to all neu-
rons in the following layer (so-called fully connected net-
works), or a group of neurons can be connected only to 
one neuron in the following layer (so-called pooling net-
works) [27].

Fully connected ANNs are used for a broad range of appli-
cations, whereas pooling networks are generally used for 
image analysis [28]. Fully connected ANNs were devel-
oped in this work since they do not require any assump-
tion to be made on the input features.

The general equation for an artificial neuron is:

          	  

(2)

Where yi is the neuron output, fi is the activation function, 
N is the number of input neurons to neuron i, wi,j is the 
weight of the connection between input neuron j and neu-
ron i, xi is the neuron input, and bi is the bias for neuron i. 
In case of fully connected ANNs N is the same for each 
neuron in one layer.

The development of an ANN model can be divided into a 
training phase and a prediction phase. The observations in 
the dataset are randomly divided thus into a training data-
set and testing dataset. The weights and biases of each 
neuron are initialized with random values at the start of the 
training phase, and then are optimized according to a loss 
function and optimization function defined by the user. The 
activation function for each layer and the number of itera-
tions (also called epochs) performed during the training 
phase are also specified by the user. The weights and bi-
ases optimized during the training phase are finally used in 
the prediction phase on the observations in the testing 
dataset

3.2	 Network architecture

Several ANN architectures were developed and compared 
in this study. During the development of the ANNs the ob-
servations in the full dataset have been randomly divided 
into training dataset (70% of observations) and testing 

dataset (30% of observations). The training dataset was 
further split into 5 folds to perform a k-fold cross-validation 
analysis [29].

ANNs were developed considering one input feature (e.g. 
total neutron count) only or combining all available input 
features from the Forkball. Before entering the ANN the in-
put features were scaled to a distribution centred around 0 
and with standard deviation of 1. The scaling factors are 
determined using the training dataset and the scaling is 
then applied to both training and testing datasets.

Both one and two hidden layers were considered, with the 
number of neurons ranging from 10 to 500 and Relu [30] 
activation functions for the hidden layers. The network op-
timization was carried out using the mean absolute per-
centage error (mape) as loss function and the ADAM [31] 
optimizer with 10-3 learning rate. The mape loss function 
was calculated according to the formula [32]:

 
 

 
		

(3)

Where ytrue is the true value of the i-th sample, ypred is the 
corresponding predicted value, nsamples is the number of 
samples, and ϵ is an arbitrary small yet strictly positive 
number to avoid undefined results when ytrue is zero. The 
mape loss function was chosen as metric for the ANNs 
performance because it is sensitive to the relative errors 
rather than the global scaling of the output features.

The optimization phase was carried out for 100 epochs 
and the algorithm convergence was verified by plotting the 
loss function as a function of the number of epochs.

For each ANN architecture, the split of the dataset into 
training and testing datasets was repeated 10 times and 
each time the mape was recorded. The ANN performance 
was finally calculated as the average and standard devia-
tion of the mape for the training, validation, and testing 
datasets over the 10 repetitions. Similar results were ob-
tained for the calculated mape, therefore only the values 
related to the testing datasets are reported in the paper.

4.	 Results

4.1	 One hidden layer ANN

ANNs with one hidden layer were developed and the num-
ber of neurons in the hidden layer was taken as the only 
hyper-parameter for optimization of the network architec-
ture. The comparison between the output parameter of 
the ANN and the declared value is shown in Figure 3 for 
initial enrichment and burnup. The same comparison is 
shown in Figure 4 for cooling time and CT’. The mape of 
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the ANNs is shown as a function of the number of neurons 
in the hidden layer.

The results for the determination of the initial enrichment 
show that by using one feature only as input to the ANN, 

the error on the estimated initial enrichment is about 25% 
with almost no appreciable dependence on the number of 
neurons in the hidden layer. However, combining all fea-
tures, the mape of the ANN estimate decreases with the 
number of neurons from 15.5% with 10 neurons down to 

Figure 4: Mean absolute percentage error for the determination of the cooling time (left) and CT’ (right). The values refer to ANNs with one 
hidden layer and the mape is shown as a function of the number of neurons in the ANN.

Figure 3: Mean absolute percentage error for the determination of the initial enrichment (left) and burnup (right). The values refer to ANNs 
with one hidden layer and the mape is shown as a function of the number of neurons in the ANN.
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9.4% with 500 neurons. It is observed that the reduction in 
mape is larger up to 125 neurons in the ANN (mape of 
10.5%) and remains rather stable by further increasing the 
number of neurons. The uncertainty associated to the 
mape due to the random selection of observations in the 
training dataset is for all cases within 1%. The uncertainty 
mentioned here and in the rest of the paper is resulting 
from the 10 iterations of the random splitting of observa-
tions in the training and testing datasets.

In case of burnup determination, by using the fission 
chamber features individually (i.e. Total neutrons, Fast neu-
trons) the mape decreases with the number of neurons 
from 45% with 10 neurons down to 30% with 500 neu-
rons. The mape using the ionization chamber feature (Cur-
rent) remains around 66% independently from the number 
of neurons, whereas using the gamma-ray spectroscopy 
features the mape slightly decreases with the number of 
neurons from 12.6% with 10 neurons down to 10.4% with 
500 neurons. By combining all features, the mape ranges 
from 13.6% with 10 neurons to 9.6% with 500 neurons. As 
in the case of the initial enrichment determination, the larg-
est decrease in mape was observed increasing the ANN 
size up to 125 neurons. The uncertainty associated to the 
mape due to the selection of observations in the training 
dataset is within 4% when using fission chamber features 
and within 2% using the ionization chamber feature. The 
uncertainty decreases to within 1% in almost all cases by 
using the gamma-ray spectroscopy features or combining 
all features in the ANN.

The results for the determination of the cooling time show 
that the mape is for many cases above 100% and signifi-
cantly larger compared to the determination of the initial 
enrichment and burnup. Therefore, in the rest of the paper, 
the cooling time variable was not considered anymore in 
the analysis. Compared to the cooling time variable, the 
mape values for CT’ significantly improve and are between 
27-28% using the fission chamber features, between 7.4% 
and 5.1% using the ionization chamber feature, between 
15.2% and 11% using the gamma-ray spectroscopy fea-
tures, and between 5.1% and 2.8% combining all features. 
The mape  for the CT’ feature is expressed in years once 
the feature has been transformed using the inverse func-
tion of Formula (1). Apart from the case of using only fis-
sion chamber features, the mape decreases by increasing 
the size of the ANN, with the most significant decrease 
with ANN of up to 125 neurons. The uncertainty associat-
ed to the mape due to the selection of observations in the 
training dataset is within 2% when using only fission cham-
ber features, and within 1% in all other cases.

The cooling time values available in the dataset are loga-
rithmically spaced and the transformation of Formula (1) al-
lows to define the CT’ variable with linearly spaced values. 
This feature transformation leads to a strong reduction of 
the mape for the ANNs using the CT’ feature and is 

another evidence of the importance of data processing in 
case of variables that have a large range of values.

The other output features in the dataset are not trans-
formed using equivalents of Formula (1) since they are al-
ready linearly spaced in the dataset.

4.2	 Two hidden layers ANN

ANNs with two hidden layers were developed by using the 
features of the Forkball instrument and the number of neu-
rons in both hidden layers as hyper-parameters. The mape 
for the determination of the spent fuel parameters is shown 
in Table 2 for ANN models using all features available for the 
Forkball instrument. Results for models using only one fea-
ture are not included since they obtained significantly larger 
mape. The mape for the determination of the CT’ feature is 
expressed in years once the feature has been transformed 
using the inverse function of Formula (1). Results using the 
cooling time as output feature for the ANNs are not includ-
ed since the estimates showed unreliable results as in the 
previous section.

The mape for the initial enrichment estimate shows a limited 
decrease from 13.2% in the case of ANN with 10 neurons in 
each hidden layer to 8.9% for ANN with 75 neurons in each 
hidden layer. However, the mape does not decrease further 
by increasing the number of neurons in any of the hidden 
layers and reaches 8.7% in the case of ANN with 500 neu-
rons in each hidden layer. The results suggest that the 
choice of the hidden layer to be increased in size is not cru-
cial, but slightly smaller mape were obtained with ANNs 
with equal number of neurons in each hidden layer. The un-
certainty associated to the mape due to the selection of ob-
servations in the training dataset is within 1% for almost all 
ANN models.

The mape for the burnup estimate also shows a limited de-
crease from 11.4% in the case of ANN with 10 neurons in 
each hidden layer to 8.4% for ANN with 75 neurons in each 
hidden layer. As for the initial enrichment estimation, the 
mape does not decrease further by increasing the number 
of neurons in any of the hidden layers and reaches 7.7% in 
the case of ANN with 500 neurons in each hidden layer. The 
results suggest that the choice of the hidden layer to be in-
creased in size is not crucial, but slightly smaller mape were 
obtained with ANNs with equal number of neurons in each 
hidden layer. The uncertainty associated to the mape due to 
the selection of observations in the training dataset is within 
1% for almost all ANN models.

The mape for the CT’ estimate shows a limited decrease 
from 3.9% in the case of ANN with 10 neurons in each hid-
den layer to 2.4% for ANN with 500 neurons in each hidden 
layer. The uncertainty associated to the mape due to the se-
lection of observations in the training dataset is within 0.5% 
for almost all ANN models.
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A
Initial enrichment - Number of neurons in the second hidden layer
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r 10 13.2 ± 0.7 12.4 ± 1.0 11.7 ± 0.5 11.3 ± 0.8 11.0 ± 1.0 10.3 ± 0.6 10.5 ± 0.7 10.3 ± 0.5 10.7 ± 0.7 10.5 ± 0.6 9.8 ± 0.4 9.9 ± 0.6

25 11.4 ± 0.9 10.4 ± 0.5 10.4 ± 0.5 10.3 ± 0.6 9.7 ± 0.9 9.3 ± 0.4 9.5 ± 0.6 9.5 ± 0.4 9.2 ± 0.4 9.0 ± 0.7 9.3 ± 0.5 8.9 ± 0.6

50 10.1 ± 0.6 9.8 ± 0.6 9.4 ± 0.5 9.1 ± 0.4 9.3 ± 0.5 9.3 ± 0.8 9.4 ± 0.8 9.0 ± 0.7 8.7 ± 0.8 9.0 ± 0.6 8.9 ± 0.7 8.3 ± 0.5

75 9.6 ± 0.6 9.2 ± 0.7 9.1 ± 0.4 8.9 ± 0.6 8.8 ± 0.5 8.5 ± 0.7 8.6 ± 0.8 8.4 ± 0.5 8.6 ± 0.6 8.5 ± 0.7 8.5 ± 0.9 8.5 ± 0.7

100 9.5 ± 0.8 9.1 ± 0.5 9.1 ± 0.5 9.1 ± 0.6 8.7 ± 0.6 8.9 ± 0.7 8.6 ± 0.5 8.7 ± 0.6 8.5 ± 0.7 8.5 ± 1.0 8.3 ± 0.7 8.3 ± 1.3

125 9.7 ± 0.3 9.4 ± 0.6 9.1 ± 0.8 8.7 ± 0.6 8.6 ± 0.6 8.8 ± 0.9 8.5 ± 0.6 9.3 ± 1.0 8.6 ± 0.6 8.1 ± 0.6 8.4 ± 0.8 8.3 ± 0.7

150 9.3 ± 0.5 9.3 ± 0.6 9.2 ± 1.0 9.0 ± 0.6 8.7 ± 0.9 8.6 ± 0.4 9.0 ± 1.2 8.7 ± 0.6 8.5 ± 0.6 8.5 ± 1.0 8.0 ± 0.7 8.2 ± 0.9

200 9.5 ± 0.8 8.8 ± 0.6 8.8 ± 0.5 9.1 ± 0.6 8.9 ± 0.9 8.6 ± 0.6 8.3 ± 0.7 8.6 ± 0.5 8.2 ± 0.6 8.4 ± 0.9 8.1 ± 0.3 9.1 ± 1.6

250 9.0 ± 0.4 9.0 ± 0.5 8.9 ± 0.6 8.6 ± 0.6 8.6 ± 0.7 8.6 ± 0.5 8.4 ± 0.3 8.4 ± 0.8 8.4 ± 0.5 8.2 ± 0.7 8.3 ± 0.5 8.7 ± 1.4

300 9.1 ± 0.4 9.2 ± 0.4 8.7 ± 0.6 9.2 ± 1.1 8.4 ± 0.8 8.8 ± 0.6 8.5 ± 0.5 8.7 ± 1.4 8.6 ± 0.6 8.5 ± 1.1 9.0 ± 1.1 8.1 ± 0.5

400 9.0 ± 0.4 9.1 ± 0.6 8.6 ± 0.7 8.2 ± 0.4 9.2 ± 1.3 8.9 ± 1.0 8.7 ± 0.9 8.6 ± 0.5 8.2 ± 0.4 8.4 ± 0.5 8.6 ± 1.1 7.9 ± 0.9

500 9.2 ± 0.6 9.0 ± 0.6 9.0 ± 0.8 8.9 ± 0.7 8.1 ± 0.9 9.2 ± 1.2 9.0 ± 0.7 8.6 ± 0.8 8.5 ± 1.0 8.4 ± 0.9 8.0 ± 1.0 8.7 ± 1.1

B
Burnup - Number of neurons in the second hidden layer
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r 10 11.4 ± 1.0 10.6 ± 0.8 10.6 ± 0.8 10.3 ± 0.8 10.4 ± 1.2 10.0 ± 0.7 9.9 ± 0.7 9.5 ± 0.7 9.4 ± 1.0 9.5 ± 0.8 8.9 ± 0.7 9.1 ± 0.5

25 10.5 ± 1.1 10.0 ± 0.8 9.4 ± 0.9 9.2 ± 0.7 9.2 ± 0.8 8.6 ± 0.8 8.7 ± 1.1 8.5 ± 0.7 8.3 ± 0.4 8.2 ± 0.6 8.7 ± 0.7 7.8 ± 1.0

50 9.5 ± 0.5 9.5 ± 0.8 8.8 ± 0.6 8.6 ± 0.7 8.3 ± 0.6 8.4 ± 0.4 8.3 ± 0.7 8.6 ± 0.7 7.8 ± 0.6 7.9 ± 0.6 8.4 ± 0.6 7.8 ± 0.6

75 9.1 ± 0.6 9.2 ± 0.9 8.6 ± 0.8 8.4 ± 0.6 8.6 ± 0.6 8.3 ± 0.8 8.0 ± 0.4 8.1 ± 0.6 7.9 ± 0.6 8.2 ± 0.5 7.8 ± 0.9 7.7 ± 0.8

100 9.2 ± 0.7 9.1 ± 0.6 8.9 ± 1.1 8.6 ± 0.8 8.2 ± 0.6 8.2 ± 0.6 8.1 ± 0.9 8.1 ± 0.7 8.0 ± 0.6 7.5 ± 0.8 7.6 ± 0.9 7.6 ± 0.7

125 9.4 ± 0.8 8.7 ± 0.9 8.8 ± 0.8 8.5 ± 0.7 8.1 ± 0.9 8.0 ± 0.5 8.3 ± 0.6 7.9 ± 0.9 8.0 ± 0.7 7.8 ± 0.9 7.9 ± 0.6 7.8 ± 0.7

150 9.6 ± 0.9 9.4 ± 0.8 8.6 ± 0.6 8.4 ± 0.5 8.2 ± 0.6 8.8 ± 0.7 8.6 ± 0.7 8.3 ± 0.8 7.8 ± 0.7 7.9 ± 0.6 7.6 ± 0.9 7.8 ± 1.1

200 9.7 ± 0.8 8.6 ± 0.5 8.3 ± 0.7 8.3 ± 0.8 9.2 ± 0.5 8.4 ± 0.8 8.2 ± 1.0 8.0 ± 0.7 8.2 ± 0.8 8.1 ± 0.9 8.1 ± 0.7 7.8 ± 1.3

250 8.7 ± 0.7 8.7 ± 0.9 8.6 ± 0.9 8.4 ± 0.5 8.6 ± 0.8 8.2 ± 0.6 8.6 ± 0.7 8.1 ± 0.3 8.3 ± 0.9 7.4 ± 0.8 7.7 ± 0.8 7.4 ± 0.8

300 8.8 ± 0.6 9.0 ± 0.5 8.4 ± 0.5 9.0 ± 1.2 8.5 ± 0.6 8.6 ± 0.7 8.4 ± 0.8 8.4 ± 0.8 8.2 ± 0.9 8.0 ± 0.9 7.7 ± 0.8 7.8 ± 0.9

400 8.7 ± 0.8 8.5 ± 0.9 8.3 ± 0.8 8.2 ± 1.0 8.4 ± 0.8 8.4 ± 0.8 8.2 ± 0.8 8.3 ± 0.7 8.4 ± 0.6 8.3 ± 0.8 8.3 ± 1.0 7.3 ± 1.0

500 9.0 ± 0.7 8.4 ± 0.4 8.3 ± 1.0 8.5 ± 0.9 8.1 ± 0.8 8.3 ± 0.7 8.2 ± 0.5 8.4 ± 0.7 8.1 ± 0.8 8.0 ± 1.0 7.6 ± 0.7 7.7 ± 1.1

C
Cooling time - Number of neurons in the second hidden layer
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r 10 3.9 ± 0.3 3.5 ± 0.4 3.4 ± 0.2 3.2 ± 0.1 3.1 ± 0.2 3.1 ± 0.2 3.0 ± 0.2 2.9 ± 0.3 2.8 ± 0.4 2.7 ± 0.3 2.7 ± 0.3 2.6 ± 0.3

25 3.3 ± 0.2 3.1 ± 0.3 3.0 ± 0.3 2.8 ± 0.2 2.7 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.7 ± 0.3 2.4 ± 0.2 2.4 ± 0.2 2.6 ± 0.3 2.4 ± 0.2

50 2.9 ± 0.3 2.8 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.2 2.4 ± 0.3 2.3 ± 0.3

75 2.6 ± 0.3 2.6 ± 0.3 2.8 ± 0.2 2.6 ± 0.2 2.6 ± 0.3 2.5 ± 0.3 2.5 ± 0.3 2.3 ± 0.3 2.5 ± 0.2 2.4 ± 0.2 2.5 ± 0.2 2.3 ± 0.1

100 3.1 ± 0.1 2.7 ± 0.3 2.8 ± 0.4 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.3 2.6 ± 0.4 2.5 ± 0.3 2.4 ± 0.3 2.5 ± 0.3 2.6 ± 0.4 2.5 ± 0.3

125 3.0 ± 0.2 2.7 ± 0.3 2.7 ± 0.5 2.5 ± 0.2 2.7 ± 0.3 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.4 2.4 ± 0.3 2.6 ± 0.2

150 2.9 ± 0.3 3.0 ± 0.2 2.8 ± 0.4 2.7 ± 0.3 2.7 ± 0.5 2.6 ± 0.2 2.6 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.3 2.5 ± 0.4 2.5 ± 0.4

200 2.6 ± 0.2 2.8 ± 0.3 2.6 ± 0.3 2.9 ± 0.3 2.9 ± 0.3 2.7 ± 0.3 2.7 ± 0.2 2.7 ± 0.3 2.6 ± 0.4 2.7 ± 0.4 2.5 ± 0.4 2.5 ± 0.1

250 2.8 ± 0.3 2.6 ± 0.2 2.8 ± 0.3 2.8 ± 0.3 2.8 ± 0.4 2.8 ± 0.4 2.6 ± 0.2 2.6 ± 0.3 2.7 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.5 ± 0.3

300 2.7 ± 0.2 2.8 ± 0.3 2.7 ± 0.3 2.8 ± 0.2 2.8 ± 0.4 2.6 ± 0.3 2.6 ± 0.3 2.4 ± 0.4 2.9 ± 0.3 2.6 ± 0.2 2.5 ± 0.3 2.6 ± 0.2

400 2.9 ± 0.3 2.8 ± 0.3 2.7 ± 0.3 2.8 ± 0.2 2.6 ± 0.3 2.8 ± 0.4 2.6 ± 0.3 2.8 ± 0.5 2.7 ± 0.4 2.6 ± 0.4 2.9 ± 0.4 2.7 ± 0.5

500 2.7 ± 0.2 2.7 ± 0.3 2.8 ± 0.3 2.8 ± 0.4 2.8 ± 0.3 2.8 ± 0.3 2.6 ± 0.2 2.5 ± 0.3 2.4 ± 0.3 2.5 ± 0.3 2.4 ± 0.3 2.4 ± 0.5

Table 2: Mape for the determination of the initial enrichment (top), burnup (middle), and CT’ (bottom). The results for ANNs with 10, 75, 
and 500 neurons are highlighted for comparison.
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5.	 Discussion

5.1	 Comparison between one hidden layer and two 
hidden layers ANN

The comparison of mape obtained for ANNs with one hid-
den layer and two hidden layers was conducted as the 
next step. All detector responses from the Forkball detec-
tor were considered as input features of the ANNs since 
the previous sections showed that including only a few in-
put features led to larger mape. The results are shown in 
Figure 5 as a function of the number of neurons in the hid-
den layer(s). In the case of ANNs with 2 hidden layers the 
same number of neurons was chosen in each layer.

The results in Figure 5 show that in general the ANNs with 
two hidden layers reach a smaller mape compared to the 
case of ANNs with one hidden layer.

The mape for the initial enrichment estimate shows a de-
crease by increasing the number of neurons in the hidden 
layer from 15.5% in the case of one hidden layer ANN with 
10 neurons to 9.4% for one hidden layer ANN with 500 
neurons. In the case of two hidden layers ANNs the mape 
decreases from 13.2% for ANN with 10 neurons in each 
hidden layer to 8.7% for ANN with 500 neurons. The un-
certainty associated to the mape due to the selection of 
observations in the training dataset is within 1% for almost 
all ANN models. A similar decreasing trend is observed for 
one hidden layer and two hidden layers ANNs with limited 
improvement of the mape by increasing above 100 the 
number of neurons in the ANNs.

The mape for the burnup estimate shows a decrease by 
increasing the number of neurons in the hidden layer from 
13.6% in the case of one hidden layer ANN with 10 neu-
rons to 9.6% for one hidden layer ANN with 500 neurons. 
In the case of two hidden layers ANNs the mape decreas-
es from 11.4% for ANN with 10 neurons in each hidden 
layer to 7.7% for ANN with 500 neurons. The uncertainty 
associated to the mape due to the selection of observa-
tions in the training dataset is within 1% for almost all ANN 
models. A similar decreasing trend is observed for one 
hidden layer and two hidden layers ANNs with limited im-
provement of the mape by increasing above 100 the num-
ber of neurons in the ANN.

The mape for the CT’ estimate shows a decrease by in-
creasing the number of neurons in the hidden layer from 
5.1% in the case of one hidden layer ANN with 10 neurons 
to 2.8% for one hidden layer ANN with 500 neurons. In the 
case of two hidden layers ANNs the mape decreases from 
3.9% for ANN with 10 neurons in each hidden layer to 
2.4% for ANN with 500 neurons. The uncertainty associat-
ed to the mape due to the selection of observations in the 
training dataset is within 0.5% for almost all ANN models. 
A similar decreasing trend is observed for one hidden layer 
and two hidden layers ANNs with limited improvement of 
the mape by increasing above 50 the number of neurons 
in the ANN.

The results from this study are in general agreement with 
earlier ANN models developed at SCK CEN [15]. Previous 
research concluded that ANNs were able to estimate the 
initial enrichment within 2% for 98% of the cases, the 

Figure 5: Mean absolute percentage error for the determination of initial enrichment, burnup, and CT’. The values refer to ANNs with one 
hidden layer and with two hidden layers and are shown as a function of the number of neurons in the ANN.
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Figure 6: distribution of mean absolute percentage error for the determination of initial enrichment, burnup, and CT’. The training and 
testing of each ANN architecture was repeated for 1000 iterations, each time with a random partition of the dataset. 

Table 3: Mean absolute percentage error average, standard deviation, and relative standard deviation for the determination of initial 
enrichment (top), burnup (middle), and CT’ (bottom).

(a) Initial enrichment 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 11.1 9.5 8.8 8.5

Standard deviation 0.6 0.6 0.6 1.0

Rel. standard deviation 5% 6% 7% 12%

(b) Burnup 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 10.9 9.8 8.4 7.8

Standard deviation 0.8 0.8 0.8 0.9

Rel. standard deviation 8% 8% 10% 11%

500 neurons 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 3.3 3.0 2.6 2.6

Standard deviation 0.2 0.2 0.3 0.4

Rel. standard deviation 6% 8% 11% 17%

burnup within 3% for 96% of the cases, and the cooling 
time within 10% for 87% of the cases. However, the val-
ues reported in previous research refer to estimates in the 
training dataset, therefore they should be considered as 
overestimations of ANNs accuracy. The reason for the 
large error for the cooling time estimate is probably due to 
lack of data processing, different activation function, and 
optimization algorithm used in previous research.

The performance of ANNs with 1 hidden layer and 100 
neurons are in line also with published work on the deter-
mination of spent fuel parameters using the Fork detector. 
Research [33] showed that by using calibration measure-
ments, difference between measured and declared burn-
up is within 2% for cooling times longer than 3 years and 
burnup between 30 and 55 GWd/tU. The deviation in-
creases outside these validity ranges up to 27%. Results 
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from verification campaigns using the Fork detector 
showed that the relative standard deviation between 
measured and calculated count rates is less than 8% for 
neutron detectors and less than 7% for gamma-ray detec-
tors [34].

Data analysis procedures applied in previous work [33],[34] 
are based either on calibration curves or rely on operator 
data to estimate the spent fuel parameters. In contrast, the 
ANNs developed in this study reach a similar performance 
in the estimation of the fuel parameters without additional 
input features than the detector responses.

5.2	 Optimization of ANN size to reduce overfitting

A set of ANNs with different architectures was selected for 
further comparison. ANNs with either one hidden layer or 
two hidden layers and either 100 neurons or 500 neurons 
in each layer were chosen. The ANNs with 100 neurons 
were chosen because in the previous section they showed 
small improvements in the mape compared to larger 
ANNs. Several rule of thumbs have been proposed to link 
the size of the ANN to the minimum dataset size to obtain 
reliable estimates [35]. It is generally thought that larger 
ANNs require larger amount of data to converge, and 
smaller ANNs are in general preferred because they tend 
to reduce the risk of overfitting the training dataset. There-
fore, the objective of this section is to optimize the ANN 
size in order to reduce overfitting.

For each ANN the training and testing was repeated for 
1000 iterations, each time with a random partition of the 
dataset. The mape was recorded for each iteration and the 
distribution is shown in Figure 6. The mape average value, 
standard deviation, and relative standard deviation com-
pared to the average value were calculated for each ANN 
architecture and are summarized in Table 3.

The distributions shown in Figure 6 follow quite well the 
shape of a normal distribution. However, in the case of 
ANNs with two hidden layers and 500 neurons in each 
hidden layer the distributions for the determination of initial 
enrichment and cooling time show a long tail on the high-
mape side of the distribution. This can be an effect of the 
overfitting of the dataset due to the large size of the ANNs.

The values included in Table 3 highlight the reduction of 
the mape average value by increasing the size and number 
of hidden layers. However, the table shows also that the 
decrease of the mape average value is countered by the 
increase of the mape standard deviation and relative 
standard deviation compared to the average value. The 
comparison in this section indicates that ANNs with 1 hid-
den layer and 100 neurons are already effective in inferring 
initial enrichment, burnup, and CT’ of spent fuel assem-
blies. Further enlarging the ANN architecture leads to an 
increase in the relative standard deviation of the estimate 
and risk of model overfitting.

6.	  Conclusions

Several ANNs were developed using as input features the 
simulated detector responses of the Forkball detector with 
the aim of inferring the initial enrichment, burnup, or cool-
ing time of spent fuel assemblies. ANN models with one 
hidden layer and two hidden layers were considered, set-
ting the number of neurons as hyper-parameter in the 
study. The ANNs performance was measured with the 
mape between the predicted and declared value of the 
output feature.

The results from ANNs with one hidden layer showed that 
combining all detector responses from the Forkball detec-
tor leads to a decrease of the mape compared to the cas-
es using only one detector response. In general it was ob-
served that the mape decreases by increasing the number 
of neurons in the hidden layer, but the reduction is larger 
up to 125 neurons and the mape remains rather stable by 
further increasing the number of neurons. The data pro-
cessing of the cooling time variable was essential to obtain 
a reliable estimate from the ANN. The CT’ feature, ob-
tained with a logarithmic function from the cooling time, 
was used throughout the study to obtain an estimate of 
the cooling time because ANNs using the cooling time fea-
ture obtained very large mape. The ANNs with 500 neu-
rons in the hidden layer were able to estimate the initial en-
richment with a mape of 9.4%, the burnup with a mape of 
9.6%, and the cooling time - via the CT’ feature - with a 
mape of 2.8%. The uncertainty associated to the mape 
due to the selection of observations in the training dataset 
is within 1% for almost all cases.

Considering the results from the ANNs with one hidden 
layer, ANNs with two hidden layers were developed only 
using all features from the Forkball detector, and process-
ing the cooling time variable for the corresponding ANNs. 
The results from ANNs with two hidden layers showed a 
reduction of the mape by increasing the number of neu-
rons in the hidden layers, but the decrease is rather limited 
for ANNs with more than 75 neurons. It was observed also 
that the mape is slightly smaller for ANNs with equal num-
ber of neurons in each hidden layer. The ANNs with 500 
neurons in both hidden layers were able to estimate the in-
itial enrichment with a mape of 8.7%, the burnup with a 
mape of 7.7%, and the cooling time – via the CT’ feature - 
with a mape of 2.4%. The uncertainty associated to the 
mape due to the selection of observations in the training 
dataset is within 1% for the estimates of initial enrichment 
and burnup, and within 0.5% for the estimate of cooling 
time.

The mape average value decreases by increasing the 
number of neurons and the number of hidden layers in the 
ANNs. However, this effect is countered by the increase of 
the mape standard deviation and relative standard devia-
tion compared to the mape average value.
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Based on the results presented in the paper, and given the 
size of the available dataset, it is recommended to use 
ANNs with 1 hidden layer and 100 neurons for the estima-
tion of the spent fuel parameters. Such ANNs are already 
effective in inferring the initial enrichment and burnup with-
in 12%, and the cooling time – via the CT’ feature - within 
4%. The deviation between declared values and estimates 
from the ANNs are similar to data analysis procedures 
used for the Fork detector. However, current data analysis 
procedures rely either on calibration curves or on operator 
data, whereas the ANNs developed in this study require 
only the detector responses as input features.

Future work will focus on the optimal ANN configurations 
obtained in this study to evaluate if the mape of the devel-
oped ANNs are constant over the range of initial enrich-
ment, burnup, and cooling time. The possibility of simulta-
neous estimation of the three output parameters by a 
single ANN will also be investigated.
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Abstract
A goal of the International Atomic Energy Agency (IAEA) is 

to deter the spread of nuclear weapons through detection 

of nuclear material and technology misuse. Detecting 

diversion of nuclear material from large bulk handling 

facilities, such as a reprocessing plant, is a goal that can 

prove to be both challenging and resource intensive as it 

often requires destructive analysis of numerous samples 

taken from various locations across the facility. The IAEA 

has sought out methods to develop an integrated system of 

instrumentation and data processing to reduce this burden. 

The goal of this work is to leverage machine learning (ML) 

methods to improve the effectiveness and efficiency of 

safeguards by utilizing higher uncertainty measurements, 

such as process monitoring and Non-Destructive Assay 

measurements, which are not extensively used in traditional 

safeguards methods. This work is part of a series of two 

documents that consider the use of ML to improve one 

aspect of  safeguards, namely nuc lear mater ia l 

accountancy. This part considers unsupervised networks 

that are used to detect anomalous behavior that could be 

indicative of material loss. The unsupervised approach is 

shown to exceed traditional methodologies but only after 

several practical barriers have been accounted for and 

resolved.

Keywords: safeguards; data science; machine learning; 

nuclear material accountancy; reprocessing

1.	 Introduction

The International Atomic Energy Agency (IAEA) was estab-
lished as an organization within the United Nations to pro-
mote the peaceful use of nuclear power [1]. One function of 
the IAEA is the implementation of safeguards for member 
states. The goal of safeguards is the timely detection of di-
version of significant quantities (SQs) of nuclear material for 
weapon purposes and deterrence of such diversion by the 
risk of detection. Nuclear material accountancy (NMA) is 
one method used by the IAEA to implement safeguards. 
NMA can be thought of as an audit of nuclear facilities that 
verifies reported quantities of material to ensure they have 
not been diverted. This is accomplished through several 
methods such as sampling and process monitoring. Safe-
guards can be further complemented by other systems 
such as containment and surveillance (C/S), particularly for 
large throughput facilities.

Existing NMA systems are well understood and have been 
implemented at numerous facilities. However, NMA often 
requires low uncertainty destructive assay (DA) measure-
ments to reach timeliness goals. These measurements are 
often time consuming and expensive as they must be per-
formed in an analytical laboratory. Other types of measure-
ments, such as process monitoring (PM) and non-destruc-
tive assay (NDA), can be used for remote monitoring to lead 
to lower costs, but often have relatively high uncertainties.  
Machine learning (ML) has revolutionized many fields and 
offers promise in safeguards related tasks like anomaly de-
tection. This work hypothesizes that ML could more effec-
tively leverage underutilized measurements with higher un-
certainties (e.g. NDA and PM) to improve costs associated 
with NMA.

2.	 Background

International safeguards are implemented to guard against 
diversion of significant quantities of nuclear material. This is 
defined by the IAEA as the approximate amount of nuclear 
material for which the possibility of manufacturing a nuclear 
explosive device cannot be excluded, which for plutonium 
is 8 kg [2]. One simple approach for the NMA component 
of international safeguards is item counting. Here, simple 
counting of discrete items is used to account for items that 
contain nuclear materials (e.g. fuel assemblies). When 
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			             (2)

Where						    

The terms above are defined as follows:

•		  : Measured quantity of interest at location i at time t
•		  : True quantity of interest (unobservable) at location i 

at time t
•		  : Short-term systematic (i.e. epistemic) error 

•		Arises from measurement conditions or settings that re-
main unchanged from some period of time

•		Difficult to reduce

•		Example: Error due to calibration curve

•		  : Random error (i.e. aleatory)

•		Varies unpredictable under repeated conditions

•		Can be reduced through repeated measurements

•		Example: Counting statistics

•		  : Relative standard deviation

The random and systematic errors are assumed to be in-
dependent Gaussian random variables with zero mean and 

variances   and . Measurement errors are approxi-
mately normally distributed according to Equation 3. The 
specific values of the variances depend on the measure-
ment technology that is used. The IAEA has published the 
International Target Value (ITV) guidelines [5] which pro-
vides expected performance metrics and variances.

			 
(3)

Measurement error plays an important role in the perfor-
mance of anomaly detection for material losses. Generally, 
a material loss can be thought of as a mean shift in the nor-
mally distributed material balance, as expressed in Equa-
tion 4. A key goal of NMA is to detect this shift.

		  (4)

The body of statistics literature contains a range of different 
tests that can be used for change detection such as the 
one shown in Equation 4. However, all approaches are 
generally subject to limitations arising from measurement 
error as expressed in Equation 5. The probability of detec-
tion of a mean shift in a known, normal distribution (i.e. true 
positive) approaches the probability of false alarm (i.e. false 
positive) as the variance increases.

		
		  (5) 

combined with statistics and random sampling, item ac-
counting is indeed the preferred method for facilities where 
material is most often found in discrete items. However, the 
focus of this work is large facilities where material is often in 
bulk form (e.g. powders or solutions) that require methods 
beyond simple item accounting [3]. The goal of this work is 
to develop machine learning approaches to improve mate-
rial accountancy of these large facilities. It is then important 
to accurately describe traditional methods such that the 
proposed machine learning based framework can be fairly 
compared to the current state-of-the-art.

2.1	 Traditional Nuclear Material Accounting

Material Unaccounted For (MUF) [4] is a core component of 
NMA. MUF is a quantitative balance between flows of ma-
terial into and out of a facility. Usually, facilities will have 
multiple material balances that are divided up to reach cer-
tain timeliness goals or due to physical constraints within a 
facility (e.g., separate buildings). MUF is calculated at regu-
lar intervals defined by the material balance period (MBP). 
Subject matter expertise is used to determine both the 
number and size of material balances in addition to the ma-
terial balance period. The MUF calculation at a given time t 
with measurement locations i and total number of locations 
for a given measurement n is given by Equation 1.

 	

(1)

The individual terms in the equation are as follows:

•	  : Total input transfers

•		Transfer terms are often streams of material which should 
then be time integrated. The total transfer term would 
then become  

•	  : Total output transfers

•		  : Total of all inventories at time t

•		  : Total of all inventories at time t-1

The expectation is that  when no material has 
been removed as all material has been accounted for. 
However, measurements always have some associated er-
ror, which causes a non-zero MUF even during normal 
conditions.

2.2	 Measurement Error

No measurement is perfect and therefore is accompanied 
by some degree of uncertainty. Safeguards measurements 
are often characterized by a multiplicative error model as 
described in Equation 2.
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  		 (6) 

where

Recall that each individual material balance at time t is a 
function of the total current and previous inventories   

. This results in a temporally cor-
related material balance sequence. However, the Standard-
ized Independent Material Unaccounted For (SITMUF) 
transformation [7] can be used to decorrelate the sequence 
by accounting for the analytically determined covariance 
(using propagation of variance), Σ, and the conditional ex-
pectation with a few assumptions. Although not covered 
extensively here, traditional NMA relies on the residual be-
tween the observed MUF value and the conditional expec-
tation of MUF. A sequential test, namely Page’s trend test 
[8] [9], is used to detect trends in the material balance se-
quence residual. Under normal conditions, the SITMUF se-
quence should be approximately zero owing to a good 
conditional expectation. Material losses lead to poor ex-
pectations and larger residuals.

2.4	 Machine Learning

Machine Learning (ML) refers to algorithms that perform a 
task without being explicitly programmed to do so. ML has 
seen a large surge in interest and is now embedded into 
many aspects of our daily lives. Although arguably less 
popular than domains such as computer vision, anomaly 
detection has benefited greatly from improvements in ML. 
Given the limitations described in previous sections, name-
ly the dependence of traditional NMA on measurement un-
certainty, it would be desirable to develop a ML framework 
that could sidestep the limitation. Specifically, a notable 

Put simply, smaller mean shifts relative to the variance are 
more difficult to detect as they often get lost in the noise. 
This is shown more concretely in Figure 1 where the detec-
tion probability for an arbitrary, fixed material loss is quanti-
fied for a fixed false alarm probability and various levels of 
measurement uncertainty.

Finding strategies for reducing the material balance uncer-
tainty has been a historical target for safeguards R&D given 
the impact on detection of material loss. One possible im-
provement would be to reduce the measured quantity size 
which would require a more frequent material balance peri-
od. This requires some optimization as too frequent materi-
al balance closures will result in higher false alarm probabil-
ities [6]. Improving measurement uncertainty, which also 

reduces material balance uncertainty via smaller   and , 
is currently what drives the use of expensive DA 
measurements.

2.3	 Sequential Material Balance Testing

Discussion so far has focused on a single material balance 
at a specific point in time. However, timely detection of po-
tential material losses, a key goal of the IAEA, often re-
quires multiple sequential material balances. For example, 
consider the case of a single yearly material balance where 
a diversion is initiated near the beginning of the year. Con-
sequently, it would be months before the loss could be de-
tected. Sequential material balances also have the added 
benefit of reducing the uncertainty of any single balance 
while noting that there are some restrictions on frequency 
of material balance closure.

Each individual material balance is comprised of potentially 
many normally distributed measurements which imply the 
material balance will also be normally distributed. As each 
single material balance has some mean and variance, a se-
quence of MBs can be expressed as a multivariate normal 
in Equation 6.

Figure 1: Probability of detection shown as a function of uncertainty for a constant false alarm probability.
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used on SITMUF. For example, there have been prior at-
tempts to use autoregressive moving average (ARMA) [14]  
models with SITMUF in an effort to detect material loss [12]. 
A companion work has also considered the application of 
supervised deep learning anomaly detection to detect ma-
terial loss. That proposed work leverages a few examples 
of material loss in attempt to generally improve anomaly 
detection [15].

3.	 Problem Statement

Traditional statistics for nuclear material accountancy have 
a strong reliance on low measurement uncertainty to pro-
duce good probabilities of detection as shown previously in 
Figure 1. ML methods excel at finding subtle changes in 
signals that could indicate anomalous behavior. Ideally, a 
ML-based framework could utilize higher uncertainty (and 
potentially unattended) measurements to detect material 
loss at the same per formance level as traditional 
approaches.

3.1	 Process Modelling

Obtaining data from actual nuclear facilities is often imprac-
tical due to cost and limited availability. The Separation and 
Safeguards Performance Model (SSPM) [16] [17] PUREX 
flowsheet has been used to provide synthetic training, test, 
and validation data for the techniques described in this 
work. The model was developed for systems-level analysis 
of safeguards design for various facilities including UREX+, 
PUREX, gaseous enrichment, fuel fabrication, electro-
chemical reprocessing, and more. The model uses MAT-
LAB Simulink to track elemental and isotopic material flows 
through various unit operations. Measurement blocks are 
used to simulate different types of measurements such as 
PM, NDA, and DA. Several common statistical tests used 
by the IAEA are also integrated into the model.

A PUREX SSPM flowsheet, based on a generic facility [18], 
is shown in  Figure 2. The grey blocks represent the pro-
cessing vessels throughout the plant and contain signifi-
cant detail about inventories, timing of operations, filling/
emptying sequences, etc. Signals connecting the blocks 
contain mass flow information for all nuclear material and 
bulk flows. The blue blocks represent measurement points 
which feed the traditional material balance calculation. The 
shaded regions (red, blue, and green) correspond to vari-
ous prediction regions where neural networks are used to 
learn the area’s behavior.

3.2	 Baseline Machine Learning Approach

This work is motivated by the universal approximation theo-
rem [19] which states that an arbitrary-width single layer 
neural network can approximate any well-behaved func-
tion. It is important to note that the theorem does not com-
ment on the learnability of such well-behaved function. 

improvement would be the use of lower cost, but higher 
uncertainty process monitoring (PM) and non-destructive 
assay (NDA) measurements to detect material loss. Such a 
framework would require framing material loss as an anom-
aly detection problem. This contrasts with traditional NMA 
which attempts to detect diversions through direct quantifi-
cation of nuclear material (i.e. MUF).

There are many different anomaly detection algorithms that 
have been proposed as there is no universal solution for all 
problems. Consequently, this work represents only one po-
tential, but informed solution for applied ML to improve nu-
clear material accountancy. Specifically, this work consid-
ers supervised regression with an unsupervised anomaly 
detection problem. The supervised regression problem re-
quires the ground truth to learn an approximate function for 
some task. In this case, the regression task is to learn the 
behavior of parts of the PUREX reprocessing facility. Then, 
an unsupervised anomaly detection algorithm is used to 
detect unusual behavior. This class of anomaly detection 
algorithm does not require specific labelled examples of 
anomalies and instead relies on some proxy metric to de-
scribe normality. Unsupervised methods are particularly 
desirable for safeguards applications where it can be diffi-
cult or impossible to provide examples of all credible mate-
rial loss pathways. This also facilitates a more direct com-
parison with the existing benchmark (Page’s trend test on 
SITMUF) which also has no requirement with regards to ex-
amples of material loss.

In contrast, supervised approaches do require explicit, la-
belled examples of material loss, but do offer some poten-
tial advantages. For example, supervised approaches ena-
ble for direct optimization of material loss detection rather 
than specification of a proxy problem. Direct optimization 
through specific examples of material loss could also lead 
to better feature representation in supervised approaches 
leading to improved performance for known, high conse-
quence loss pathways. Supervised approaches may prove 
useful, but were not considered in this work.

2.4.1	 Related Work 

Several previous works have attempted to develop im-
proved strategies for guarding against material losses by 
developing novel approaches. One example is the Multi-
Isotope Process Monitor (MIP) [10] wherein existing pro-
cess monitoring measurements were combined with pat-
tern recognition techniques in an attempt to develop more 
effective detection of material loss at large throughput facil-
ities. MIP used principal component analysis (PCA) [11] to 
reduce the dimensionality of gamma a spectra to learn new 
representations that express most of the signal variance. 
Then, PCA statistics such as Q-residual could be used to 
detect anomalies. The approach used by MIP was limited 
by the linear reduction in dimensionality. Other works [12] 
[13] have sought to improve on commonly used trend tests 
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predictions should no longer agree with observations. Fig-
ure 4 shows an example of this behavior wherein poor pre-
dictions are made during a window of anomalous behavior.

PUREX facilities have some operations that are time de-
pendent and are not well suited to traditional feed forward 
neural networks, which have no temporal capacity. Conse-
quently, the prediction step utilizes Long short-term memo-
ry (LSTM) [20] networks to complement traditional neural 
networks to capture the temporal properties of certain sig-
nals. For example, PUREX facilities have several mixing 
tanks that are dependent on material that has entered pre-
viously. Specific neural network architectures and data rep-
resentation have a strong impact on accurate predictions. 
This work found that the LSTM networks trained well and 
produced good predictions when temporal behavior is 
captured by passing a window of history as input.

Nonetheless the hypothesis of this work is that a neural 
network should be able to learn the behavior of a large 
throughput nuclear facility, specifically a PUREX reprocess-
ing facility. A material loss should appreciably change facili-
ty behavior such that the neural network will no longer pro-
vide accurate predictions. In turn, this will lead to 
discrepancies between observations and predictions that 
could be used to detect and possibly locate anomalous 
behavior (i.e. material loss). The hypothesis is summarized 
below in Figure 3.

The proposed unsupervised ML approach requires two 
steps. The first step is the prediction step where the neural 
network learns the behavior of a certain facility process (or 
area of processes) under normal conditions. Ideally, the 
neural network should be able to learn this behavior by way 
of the universal approximation theorem. Then, as the facility 
changes under anomalous conditions, the neural network 

Figure 3: Proposed setup for applied ML for NMA

Figure 2: SSPM PUREX Model. Several labelled and shaded regions represent different areas of MBA2 that were learned by individual 
neural networks (i.e. subunits).
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used here in combination with a classification window to 
define an alarm condition.

Isolation forest [21] is an unsupervised (requiring no exam-
ples of abnormal behavior) anomaly detection algorithm. 
The key intuition behind isolation forest is that anomalies 
should be few and different from normal data. The algo-
rithm proceeds by selecting an observation, randomly se-
lecting a feature, then randomly selecting a split value be-
tween the minimum and maximum. This process occurs 
recursively until the observation has been isolated from the 
larger dataset. Put simply, isolation forest will generate a list 
of logical criteria that make a particular observation appear 
unique. The criteria (i.e. splittings) can be represented as a 
tree structure. Gathering multiple sets of criteria results in a 

The difference between the prediction and observed value, 
which in this work will be referred to as reconstruction er-
ror, is arbitrary due to imperfect predictions even under 
normal conditions. For example, the neural network used in 
the prediction step can never calculate predictions with full 
accuracy which always results in some non-zero prediction 
error. A second step is required to translate these arbitrary 
reconstruction errors into alarms and probabilities of detec-
tion. Identification of anomalous behavior is complex as 
PUREX facilities have large multidimensional datasets that 
arise from measurements at multiple locations each with 
several features.  Instead of using a simple static threshold 
to detect anomalous behavior (e.g. alarm if a reconstruction 
error is greater than some scalar value), isolation forest is 

Figure 4: Neural network prediction during abnormal conditions.

Figure 5: Isolation forest uses recursive splitting to measure the abnormality of a point. This figure shows a normal point, xi, 
which takes many splits to isolate it from the larger population. In contrast, the abnormal point x0 requires fewer splits.  [21].
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increasingly sparse. Eventually, the algorithm will no longer 
classify anomalies as off normal as the anomaly magnitude 
decreases below the uncertainty bounds. This creates the 
need for a classification window. Off-normal classifications 
that are dense should represent an anomaly; therefore, a 
certain number of off-normal classifications in a particular 
window should cause an alarm. For example, if 10 out of 
the last 15 classifications are off-normal then the alarm 
condition has been reached.

It should be noted that there is some dependency between 
the classification window and contamination rate. Although 
this work used a 2% contamination rate, there are a range 
of possible values (1-6%) that still resulted in good detec-
tion levels. However, it is important to adjust both parame-
ters (contamination rate and classification window) in paral-
lel. Often, a higher contamination rate still resulted in the 
same detection probabilities, but higher false alarm rates. 
Consequently, the classification window requires adjust-
ment in conjunction with the contamination rate.

The proposed unsupervised machine learning approach 
can be summarized as follows:

•	Stage 1: Neural networks are used to predict behavior of 
several locations within PUREX facility

•	Stage 2a: Isolation forest uses reconstruction errors (i.e. 
prediction - observation) from all subunits as input to 
classify behavior as normal or off-normal

•	Stage 2b: A threshold is applied over recent outputs from 
stage 2 (i.e. isolation forest). If there are many off-normal 
classifications recently then an alarm condition is reached

forest, hence the name isolation forest. The path length of 
an observation averaged over several random trees is used 
as a proxy for normality. Points with path lengths below a 
threshold (as abnormal points should take less logical crite-
ria to isolate) are considered anomalous. A visual intuition 
for isolation forest is shown in Figure 5.

Isolation forest has several hyperparameters that can be 
optimized through a grid search. These include the number 
of trees, maximum number of samples to train each esti-
mator, and maximum number of features to train each esti-
mator, which for this work, are set to 100, 15000, and 5 re-
spectively. An additional hyperparameter, namely, the rate 
of contamination in the training dataset (i.e. percent of data 
estimated to be anomalous), cannot easily be discovered 
through a grid search.

This work generally assumes a 2% contamination rate even 
though the entire dataset is normal. Effectively, this forces 
classification of 2% of the training dataset as anomalous. 
The normal points that are classified as anomalous repre-
sent observations with the highest applied errors (i.e. errors 
drawn from the distribution tails). As classifications alone 
are insufficient for detecting anomalous behavior (as some 
normal points are classified as off normal), an alarm criteri-
on on the classification is required. Using prior knowledge 
that material loss should be rare, it can be assumed that 
isolation forest will only infrequently produce false positives 
(i.e. points that are classified as abnormal but are normal). 
An example of isolation forest output for different anomalies 
is shown in Figure 6.

Note that there are some classifications being made as 
normal in the protracted anomaly shown in Figure 6. This is 
a function of a particular set of measurement realizations. 
As anomalies become more protracted and closer to the 
uncertainty bounds, the off-normal classifications become 

Figure 6: Isolation forest response to different anomalies. Class 1 is “Normal”, and class -1 is “Off-normal”.
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5.	 Identified Performance Factors

Real world application introduces several challenges that 
impact model performance. It is important to identify and 
resolve these issues given the high consequence environ-
ment of safeguards. The impact of several specific factors 
and traditional machine learning requirements are explored 
in the following.

5.1	 Facility Discretization

Early work centered on training a single neural network that 
could learn the facility behavior at all measured locations. 
However, several unique facility operations prevented effec-
tive training of this large neural network. This resulted in the 
adoption of a discretized approach that segmented the fa-
cility into smaller regional neural networks. The following 
sections describe the primary facility regions (referred to as 
“subunits”) that resulted from the facility segmentation. This 
discretization of the facility had no observable performance 
impacts on the supervised regression task. That is, infor-
mation contained in each subunit was sufficient for the task 
of predicting the feature value at the next time step.

5.1.1	 Subunit 1: Pulsed Separation Columns

The first segment of the facility encompasses a region from 
the head end, where dissolved nuclear fuel enters the pro-
cess, to the output of the decontamination column, where 
a purified plutonium solution leaves.  Figure 2 shows this 
area highlighted in red.

This area consists of several continuous processing opera-
tions that are straightforward for a neural network to learn. 
Specifically, a bi-layer LSTM with a running history of input 
material is used to predict the output of the decontamina-
tion columns. The length of the input history was selected 
to be 200-hours, which was based on empirical perfor-
mance as measured by mean-squared error (MSE) on the 
next time step prediction. The running history approach is 
expressed in Equation 7 where  is approximated by 
the bi-layer LSTM. Equation 7 denotes features as n and 
time as t. Use of LSTM layers is key to capture temporal 
dependencies between the inputs and outputs of this facil-
ity region.

1

		  (7) 

5.1.2	 Subunit 2: Pu Evaporator

The second segment of the facility encompasses a single 
unit operation, namely the evaporator, or “Pu Evaporator” 
as shown in the blue region of  Figure 2. This operation 

4.	 Experimental Setup

The first step of this anomaly detection framework is to 
generate several datasets from the SSPM PUREX model to 
train and test the two-stage machine learning pipeline. The 
SSPM runs simulated randomized input fuel entering the 
facility to reflect real-world operation resulting in additional 
material flow and inventory variation. In practice, actual fa-
cilities will have a distribution of possible inputs and outputs 
rather than a single fixed input and output which results in 
a more difficult anomaly detection problem.

Each dataset generated by the SSPM model contains 
about 100 different runs to obtain good performance sta-
tistics for traditional approaches to benchmark against and 
to ensure sufficient data is available for training the ma-
chine learning algorithms. The runs are 6480 hours long 
(270 days), which is about one operating year for a PUREX 
facility. Ideally, this machine learning approach will operate 
directly on signals of interest (e.g. gamma spectra), howev-
er, the computational overhead of calculating tens of thou-
sands of gamma spectra is large. Instead, this work con-
sidered mass with applied errors noting that this is not a 
direct evaluation of algorithmic performance. However, the 
use of mass to assess performance is a reasonable proxy 
as mass and gamma spectroscopy are related by a con-
stant. The dataset evaluated in this work contained features 
representing 134Cs, 137Cs, 154Eu, 241Am, and 241Pu in most 
cases. These features represent quantities that could real-
istically be observed at a PUREX facility.

Individual datasets for each location have a shape of [100 x 
6480 x 5] where 100 is the number of runs (operational fa-
cility years), 6480 is the time in hours (assumed to be 270 
operational days per year), and 5 is the number of features 
contained. The machine learning pipeline required several 
datasets to perform training and performance evaluations 
which is detailed below.

1.	 First stage (neural network prediction) is trained with a 
0.75/0.25 split for training and validation

2.	 First stage generated training dataset of normal 
residuals

3.	 Second stage (isolation forest) is trained

4.	 Final datasets reflecting different scenarios are used to 
evaluate performance

The final step in the pipeline is evaluation of a normal data-
set to determine a false alarm probability and several 
anomalous datasets to quantify detection performance. 
Specifically, four different anomalous scenarios of increas-
ing difficulty are considered. Although not fully described 
here note that scenario 1 is the easiest to detect while sce-
nario 4 is the most difficult. All datasets used in this evalua-
tion had errors applied according to the multiplicative error 
model described in Section 2.2 to represent real world 
conditions more accurately.
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normal operations, there are slight variations in the input 
and output batch size, which will impact the running aver-
age calculation. Rather than adjusting the running average 
feature by hand, the LSTM can learn to adjust it during 
training provided that the tank level measurement, which is 
a function of the input and output sizes, is provided.

5.2	 Training data availability

Machine learning algorithms often require large training 
datasets to demonstrate adequate performance at test 
time. One important factor driving required training data is 
model size. As the number of trainable weights and biases 
increases so does the training dataset size requirements. 
Safeguards data is often difficult to obtain, and real-world 
constraints could lead to little available training data. There-
fore, it is important to consider how the dataset size im-
pacts performance using concrete metrics. This section ig-
nores measurement error (described in Section 5.4) to 
isolate the impact of available training data. As such, it is 
important to note these results would not reflect real-world 
results as there are other performance factors in addition to 
training data availability.

A parametric study is conducted to consider the impact of 
training dataset size on machine learning performance 
(probability of detection). It is important to note that both 
stages of the proposed approach (prediction and classifi-
cation) require training data. Further, as the prediction 
stage is used to train the classification stage, there is a 
compounded effect of reduced training data. The classifi-
cation stage will not only suffer from less training data, but 
poorer quality data as the prediction stage also degrades.

The baseline assumes 100 operational years of training 
data. This is chosen to be sufficiently large to ensure that 
training performance is driven by the machine learning al-
gorithm hyperparameters which enabled fine tuning. It 
should be noted that this is not simply 100 iterations of the 
same operational year (i.e. same pattern with different er-
rors applied), but unique simulations. There are a wide 

requires unique consideration as the signal is converted 
from continuous to discrete. During normal operation the 
evaporator accumulates solution until a setpoint is reached. 
Then, the evaporator reduces water content of the accu-
mulated solution and outputs a discrete batch of material 
that is processed in a following operation.

The previous approach of a running history (described in 
Section 5.1.1) as input for a LSTM network is not appropri-
ate for this area of the facility. For example, consider if the 
running history approach is used while the evaporator is 
accumulating solution and the setpoint had not been 
reached. The neural network would attempt to predict the 
previous output batch while the inventory reflects a differ-
ent product. This area of the facility uses fixed window of 
time that precisely map the accumulated solution to the 
corresponding product. Here, a single layer feed-forward 
neural network is used to predict the output product given 
the total accumulated material

5.1.3	 Subunit 3: Pu Buffer Tank

The final segment consists of another single unit operation, 
a mixing tank, listed as “Pu Buffer Tank” in the green region 
of  Figure 2. This operation serves as a surge tank for the 
“Pu Accountability Tank”. During normal operation, this 
tank fills indefinitely, unless a surge signal is sent, in which 
case it empties. This behavior is regular and is shown in 
Figure 7. For this operation, the running history similar to 
what is described in Section 5.1.1 is used. A bi-layer LSTM 
network is again used; however, several hand-engineered 
features are required for the LSTM to make accurate 
predictions.

Note in Figure 7 that the tank output is a combination of 
two quantities: the previous batch of material to arrive in the 
tank and the residual tank inventory at the previous time 
step. Thus, a running average of the mixing tank inventory 
must be estimated.  This running average can be roughly 
approximated as . Additionally, the actual 
tank level measurement must also be included. During 

Figure 7: Mixing tank inventory
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generally increased with shrinking training dataset sizes 
(shown in Figure 9). A key assumption in this work is that a 
neural network can adequately learn facility operations. In-
creasing prediction errors from an inability to learn facility 
behavior results in a more difficult classification task.

It is interesting to note some subunits, which correspond to 
specific unit operations, are more susceptible to reduced 
training data than others. This phenomenon is not well un-
derstood and a target for future work. However, one possi-
bility is that more complex operations require more training 
data, which is supported by machine learning literature. Of-
ten data requirements scale with both algorithm size and 
task complexity. Subunit 1 is a relatively simple area of the 
facility (pulsed separation columns) that degrades little with 
decreased training data whereas subunit 2 is more com-
plex (evaporator) has a significant decrease in performance 
(i.e. higher errors).

5.3	 Facility transients

Routine operations at bulk nuclear facilities can sometimes 
lead to transients that are not malicious in nature. These 
changes in behavior could make it difficult to detect anom-
alous behavior that occurs at the same time. However, a 
successful detection algorithm should be able to recover 
after the transient has ended and regain performance. Re-
covery of the proposed machine learning pipeline is evalu-
ated by generating datasets representative of two different 
facility transients. The performance is reported as the re-
construction error (i.e. prediction-observation), which has 
strong correlations to probability of detection.

Facility transients can be grouped into several categories 
despite the numerous different potential scenarios. This 
work considers two different types of the transient. The first 
includes scenarios that change facility behavior but do not 
result in a new baseline. An example in this category might 
be small changes to product composition as a result of a 

range of potential facility patterns due to the many combi-
nations of input fuel that could be selected that are ade-
quately captured in large datasets.

The parametric study considered the joint performance of 
reduced training data on the machine learning pipeline. 
That is, both stages are trained on reduced training data-
sets. For example, when 10 years of training data is used, 
the first prediction stage is trained on 10 years’ worth of 
data. Then, 10 years’ worth of predictions are generated 
and used to train the second stage. This essentially dou-
bles the amount of training data that would be required in 
practice. This study also incorporated early stopping during 
training of the prediction stage to ensure that any perfor-
mance losses are due to the inability of a smaller dataset to 
represent the test distribution rather than less training time. 
Results of this parametric study are shown in Figure 8.

Unsurprisingly, lower quantities of training data have a larg-
er impact on the more difficult to detect scenarios. These 
scenarios tend to be relatively large changes compared to 
the uncertainty arising from measurement error. The more 
difficult scenarios have much lower performance while see-
ing sharp drop offs at certain quantities of training data. 
This is largely due to inflexible alarm threshold. Recall that 
the alarm criteria specified in this work is defined by a cer-
tain number of off-normal classifications within a window of 
time. Small changes in performance resulting in fewer off-
normal classifications could result in large changes in alarm 
probabilities. For example, consider a threshold criterion of 
30 off-normal classifications, sampled at a rate of once per 
hour, in a 50-hour window. A small degradation in perfor-
mance that results in an average of 27 off-normal classifi-
cations when also sampled at the same rate in a 50-hour 
window translates to many fewer alarm triggers.

Poorer performance of the prediction stage also results in 
degraded detection performance for some of the subunit 
areas.  The average prediction error for normal behavior 

Figure 8: Probability of detection for several material loss scenarios with varied training dataset sizes. A probability of 1.00 
indicates a 100% probability of detection whereas a probability of 0.00 indicates no probability of detection.
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The second transient represents a scenario where facility 
behavior is explicitly changed moving forward. For exam-
ple, this could be damage to a unit operation or represent 
sensor failure. Figure 11 shows the prediction error during 
and after a simulated transient. Again, desirable behavior is 
shown during the transient where there is a sharp increase 
in prediction error. However, the prediction performance 
does not return to pre-transient levels. This is somewhat 
expected as the training data, which is represented to the 
algorithm as normal, no longer accurately represents the 
facility. Action would be required to adjust the prediction 
stage such that it reflects the updated normal conditions.

Both types of facility transients result in poor prolonged 
prediction performance, which would negatively impact 
probability of detection. While problematic, there exist 
some strategies within the machine learning literature to re-
train algorithms in an online environment. Future work 
should target strategies to mitigate the impact of facility 
transients which are likely to occur in real-world scenarios.

vessel leak. The second category includes scenarios that 
do significantly alter facility which results in a new baseline. 
Examples here would include transients that cause surge 
vessels to have a new equilibrium or changes to operation-
al timing.

The first transient considered is in the first category where 
there is a temporary change in the behavior of the particu-
lar area. Figure 10 shows changes in the neural network 
prediction during and after this transient. The prediction is 
desirable during the transient in that the prediction error is 
high compared to normal behavior. However, after the tran-
sient has passed, the prediction no longer returns to a 
baseline performance level. This appears to indicate that 
the training data no longer represents conditions in the fa-
cility and that there has been some prolonged change in 
facility behavior. This is problematic as anomaly detection 
performance in the period of time after the transient will 
decrease.

Figure 9: Impact of training data on prediction performance.

Figure 10: Prediction error of a neural network for a single isotope during a facility transient that changes the baseline of a facility section.
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The mean squared objective is essentially the negative log-
likelihood (i.e. cross-entropy) between the empirical distri-
bution and a Gaussian model (i.e. the learned distribution, 
assumed to be normal). Effectively, the prediction stage 
tries to learn a function that produces an output distribution 
as close as possible to the training distribution. Then, under 
anomalous conditions, the learned distribution is no longer 
representative indicating that a mean shift has occurred.

Earlier, this work showed that increases in material balance 
uncertainty reduces the probability of detection for a mate-
rial loss. A similar phenomenon is at play for the mean shift 
detection problem. Increases in a distribution’s variance re-
duces the probability that a mean shift can be detected. 
This can be shown using a variety of approaches including 
a simple application of Bayes’ theorem to a more complex 
analysis of variance (i.e. ANOVA) procedure.

The previous section showed that there is a strong de-
pendence on sufficient large training datasets to achieve 
satisfactory anomaly detection performance. It is reasona-
ble to assume, given the limited amount of safeguards 
data, that multiple measurement campaigns might be re-
quired to create a dataset of sufficient size. Each measure-
ment campaign will have its’ own unique set of calibrations 
(i.e. systematic error), that when aggregated together, will 
result in a larger variance than any individual dataset as 
shown in Figure 12.

The aggregation of multiple measurement campaigns re-
sults in the machine learning pipeline essentially learning 
variation due to measurement error in addition to facility 
behavior. This leads to lower anomaly detection perfor-
mance than traditional statistical methods used for safe-
guards. This phenomenon is particularly nuanced and dis-
cussed at length in a companion work [22].

5.4	 Measurement Error

Measurement error is a reality for the deployment of any re-
al-world NMA system. Traditional NMA systems must im-
plement specific strategies to detect losses when meas-
urements are contaminated with error. For example, the 
SITMUF transformation can mitigate some impacts of 
measurement error by converting a MUF sequence to an 
uncorrelated sequence. Many common anomaly detection 
algorithms in the machine learning literature are prone to 
failure when used with error contaminated data. There are 
also few documented strategies on mitigating measure-
ment error as most literature focuses on bias in supervised 
learning settings. For example, fairness which is an impor-
tant area of research, seeks to remove human bias from 
collected datasets. However, this is fundamentally different 
from the multiplicative error model encountered in 
safeguards.

Fundamentally, detection of material loss (or any anomaly 
at all) is a mean shift detection problem. That is, given a 
normal distribution of features, can a shift in population 
mean be detected? This intuition forms the basis of several 
common anomaly detection algorithms. The proposed ma-
chine learning pipeline here also relies on a similar premise. 
Consider the training objective for the prediction stage; pre-
dict the facility behavior given some input. This is achieved 
through a mean squared error objective which attempts to 
minimize the difference between training examples and the 
prediction. It can be shown that the relationship in Equation 
8 is true.

(8) 

Figure 11: Prediction error of a neural network for a single isotope during a facility transient that changes facility behavior.
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multiple combinations of windows and total classifications 
that resulted in a 5% FAP. The difference for most losses is 
insignificant but caused a 23% difference in detection 
probability for scenario 1, which is the most abrupt scenar-
io. This reflects threshold where the total number of classifi-
cations is larger than the duration of the abrupt loss.

6.	 Ideal results

The previous section identified several factors that require 
attention to ensure adequate performance of the machine 
learning pipeline. Ideal (optimistic) performance can be 
quantified by accounting for these factors. The overall per-
formance of the machine learning algorithm is compared to 
the traditional Page’s trend test on SITMUF under near 
identical conditions in Figure 14. The ideal conditions used 
for Figure 14 made several assumptions:

•		Sufficient training data available

•		Optimal threshold selection

•		No facility transients

5.5	 Threshold selection

Recall that the second stage of this proposed machine 
learning approach requires some threshold for an alarm cri-
terion. Isolation forest generates class labels when given 
the reconstruction error from the prediction stage. Howev-
er, due to variation caused by measurement error, the clas-
sifications will never be perfect. Intuitively, material losses 
should generate more off-normal classifications (i.e. true 
positives) in each period as off-normal classifications made 
for normal observations (i.e. false positives) will be random-
ly distributed. One potential alarm condition would be re-
quiring a specific number of off-normal classifications in a 
particular window of time. A common metric to tune safe-
guards thresholds (often defined by regulations to be 5%) is 
the false alarm probability (FAP, i.e. false positive rate).

Threshold optimization is underdefined in this case as there 
is one constraint (5% FAP) and two unknowns (window size 
and total classifications). This leads to multiple possible so-
lutions for threshold criteria. In practice this has some im-
pact on detection of abrupt material loss as shown in Fig-
ure 13. A parametric study is conducted that considered 

Figure 13: Probability of detection for several loss scenarios with 
varied thresholds.

Figure 14: Detection probabilities for various loss scenarios.

Figure 12: Probability density functions for multiple normal datasets.
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crucial for real world performance. Several important find-
ings are summarized below:

•	Data representation is important to achieve adequate 
training performance

•	Data availability has a significant impact on performance 
- Some facility operations are easier to learn than others 
and thus less susceptible to smaller training datasets

•	Online training will likely be required after facility 
transients

•	Measurement error has a significant negative impact on 
anomaly detection performance of the unsupervised ma-
chine learning approach

•	The proposed alarm criteria are inflexible and can cause 
result in poor performance when not properly optimized. 
- A better criterion should be developed in future work.

Additionally, the generalization of the proposed pipeline 
was not studied in depth here. However, it is hypothesized 
that this approach will exhibit poor generalization even for 
facilities of the same type (I.e. other PUREX reprocessing 
facilities). The behavior learned through training will likely 
vary from facility to facility due to differences in equipment 
and facility layout. Applicability of common mitigation strat-
egies for small datasets, such as transfer learning [23], to 
this problem remain unknown. 

This work shows that unsupervised machine learning has 
the potential to out-perform traditional safeguards, but sev-
eral requirements must be satisfied. There are several chal-
lenging limitations that are raised which make it unlikely that 
ML will wholly replace traditional safeguards in the near fu-
ture. Data driven systems will likely complement existing 
safeguards systems until future work can resolve important 
barriers identified here.

Measurement error has many potential sources, and as 
such, could be difficult to resolve in real-world deployment 
scenarios. Consequently, it is not surprising that large por-
tions of R&D for safeguards target reductions in measure-
ment error.  As there are no obvious data driven solutions 
to reduce the measurement error, Figure 15 considers the 
performance of both traditional statistical methods for safe-
guards and the unsupervised machine learning pipeline un-
der “Uncalibrated” and “Calibrated” measurement condi-
tions. Uncalibrated conditions are similar to current 
practices at facilities where sensors are placed and meas-
ured independently. The calibrated condition considers an 
experimental procedure wherein sensors are calibrated 
against each other (i.e. cross-calibrated). Here, the system-
atic errors for each sensor are the same non-zero value. 
For example, instead of having one sensor +1% biased and 
another being -2% biased, all sensors are biased at the 
same level.

The simulated calibration procedure has a large impact on 
the performance of the machine learning approach. With-
out it, performance is worse than traditional safeguards 
and very poor for most scenarios. It is interesting to note 
that the traditional safeguards approaches do not signifi-
cantly benefit from this calibration procedure. This likely 
arises from implementation details for each approach. The 
machine learning algorithm is comparing signals from dif-
ferent locations in the facility, which is sensitive to mis-
matched biases specifically (i.e. large differences between 
sensors). However, the traditional safeguards approach is 
focused on quantifying MUF, which is sensitive to error in 
general.

7.	 Conclusions

This work proposed an unsupervised machine learning 
pipeline consisting of two steps to improve safeguards of 
bulk facilities. Several practical performance factors are 

Figure 15: Detection probabilities for various loss scenarios.
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Abstract:

Natura l  language processing (NLP) tasks (tex t 
classification, named entity recognition, etc.) have seen 
revolutionary improvements over the last few years. This is 
due to language models such as BERT that achieve deep 
knowledge transfer by using a large pre-trained model, 
then fine-tuning the model on specific tasks. The BERT 
architecture has shown even better performance on 
domain-specific tasks when the model is pre-trained using 
domain-re levant tex ts. Inspired by these recent 
advancements, we have developed NukeLM, a nuclear-
domain language model pre-trained on 1.5 mill ion 
abstracts from the U.S. Department of Energy Office of 
Scientific and Technical Information (OSTI) database. This 
NukeLM model is then fine-tuned for the classification of 
research articles into either binary classes (related to the 
nuclear fuel cycle [NFC] or not) or multiple categories 
related to the subject of the article. We show that 
continued pre-training of a BERT-style architecture prior to 
fine-tuning yields greater performance on both article 
classification tasks. This information is critical for properly 
tr iaging manuscripts, a necessary task for better 
understanding citation networks that publish in the nuclear 
space, and for uncovering new areas of research in the 
nuclear (or nuclear-relevant) domains.

Keywords: nuclear; energy; language; classification

1.	 Introduction

While natural language processing (NLP) has made signifi-
cant strides in recent years, its application to the nuclear 
domain has remained rudimentary. In any domain, the 
ability to classify and prioritize information is critical when 
the data volume is large and growing. To enable the dis-
covery of new connections between existing technologies 
or the potential use of a new technology in the nuclear do-
main, simple keyword searches are insufficient. To accel-
erate research in the nuclear domain, a language model is 
needed—one that “understands” nuclear terminology, “un-
derstands” terminology in similar energy domains, and can 
automatically uncover latent similarities between materials, 
methodologies, and technologies.

In addition to accelerating nuclear science, this new meth-
odology would be valuable to the International Atomic En-
ergy Agency (IAEA) as part of their information collection 
and processing system. Quantifying the threat of a nation 
state’s nuclear capability presents a particularly complex 
problem because the use, development, and transfer of 
nuclear technology is not itself an indication of nefarious 
intent. Technology itself has the added complexity of en-
compassing both physical items of trade, as well as social 
networks in academia and industry settings, where the 
“technology” is not a physical, tradeable good, but the 
knowledge and capabilities of individuals [1]. Further, as in-
ternational scientific collaborations become more preva-
lent, transfer of nuclear technology may become more 
prevalent, including inadvertent transfers. Readily available 
open-source information about such research collabora-
tions, e.g., journal papers and technical reports, can offer 
indications of the use or transfer of such technology. Ex-
tant approaches to processing such information, to the 
limited extent it is attempted, rely heavily on manual analy-
sis by humans, a method constrained by time and subject-
matter expertise. A new approach would help the IAEA to 
develop capabilities toward the detection of nuclear tech-
nology use or transfer through analysis of technical 
publications.

The amazing progress of state-of-the-art NLP methods 
has opened up new opportunities for nuclear domain 
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researchers to leverage powerful language models. Models 
like BERT [2] have shown significant improvement in NLP 
benchmarking metrics, such as the General Language Un-
derstanding Evaluation (GLUE) benchmark [3]. These 
benchmark metrics evaluate a language model’s ability to 
perform a variety of tasks that resemble human ability to 
comprehend and be language literate. Though undoubted-
ly one element of BERT’s success is its large architecture 
of stacked Transformers [4], another is the widespread use 
of transfer learning: pre-training on one task then fine-tun-
ing on another. By pre-training on general-purpose corpo-
ra, a model has a strong foundation when approaching 
particular benchmark tasks.

There is also evidence that the performance of pre-trained 
language models on some tasks can be improved even 
further by domain-adaptive pre-training [5]—that is, starting 
with a model pre-trained on general-purpose corpora, then 
continuing the pre-training process on a corpus that is 
more representative of the domain of interest.

Given the recent success of large, Transformer-based neu-
ral network architectures and domain-adaptive pre-training, 
as well as the need for nuclear-“aware” NLP models, we 
have developed NukeLM, a language model trained on nu-
clear-relevant research that performs best on nuclear-rele-
vant downstream tasks.

2.	 Related Work

A number of scientific and computational advances in re-
cent years have led to significant improvements in the per-
formance of computational models for natural language in-
ference and understanding. Notable among these is the 
field of transfer learning, using pre-trained models for 
downstream tasks perhaps markedly different from their 
original tasks. Often, this takes the form of semi-supervised 
learning, where a model is trained on un-labeled data using 
a self-supervised task, then fine-tuned on a supervised 
task in the same domain.

Word embeddings (e.g., word2vec [6], GloVe [7], fastText 
[8]) learn a projection from the high-dimensional vocabulary 
space of a corpus of texts into a much smaller vector 
space using self-supervised training tasks like predicting 
nearby words. A key drawback of this approach is that 
each word is associated with a single vector, regardless of 
context.

A number of approaches have been proposed to learn 
contextualized word embeddings. For instance, ELMo [9] 
trains separate forward- and backward-oriented models for 
next-word prediction, then learns linear combinations of the 
deep representations for downstream tasks. In contrast, 
BERT [2] learns to encode context from both left and right 
at once using a very large architecture of stacked Trans-
formers [4], pre-training with both a word prediction task 

(masked language modeling, MLM) and a task to predict 
whether a given sample follows another in the original text, 
relative to being chosen randomly from the corpus (next-
sentence prediction, NSP).

RoBERTa [10] leverages the same Transformer-based ar-
chitecture as BERT, but shows improvements on down-
stream tasks with some changes to its pre-training strate-
gy: it removes the NSP objective, pre-training only with 
MLM; it allow samples to cross document boundaries in 
pre-training, ensuring all pre-training samples are as long 
as possible; it determines which tokens to predict in each 
batch rather than deciding offline, before training; it uses 
much larger batch sizes; it uses byte-level tokenization in-
stead of character-level; and finally, it considers much more 
pre-training data, including those from the Common Crawl 
corpora.

SciBERT [11] clones BERT’s stacked Transformer architec-
ture and pre-training methodology but replaces the BERT 
training corpus with a large, multi-domain corpus of scien-
tific publications. This results in better performance on sci-
entific domain tasks because of the better match between 
the domains of pre-training and fine-tuning tasks.

In contrast to training a domain-specific model from 
scratch like SciBERT, Gururangan et al. [5] demonstrate 
that continued pre-training of a general-purpose language 
model on in-domain text (called domain-adaptive pre-train-
ing, DAPT) can lead to improved performance on down-
stream tasks, but that continued pre-training on out-of-do-
main text can worsen performance. They explore several 
ways to bootstrap a targeted continued-pre-training corpus 
and explore the tradeoff between performance and com-
putational expense.

Similarly, several domain-specific models have been pro-
posed that continue pre-training from a BERT checkpoint. 
BioBERT [12] continues pre-training on biomedical corpora. 
NukeBERT [13] continues pre-training on a nuclear-domain 
corpus, with the addition of newly initialized vocabulary en-
tries specific to the nuclear domain. However, in contrast to 
NukeLM, the pre-training corpus for the NukeBERT model 
was generated from a relatively small corpus consisting of 
about 7000 internal reports from the Indira Gandhi Centre 
for Atomic Research, largely focused on fast breeder reac-
tors; the NukeBERT language model is somewhat narrowly 
focused on nuclear reactor research for power generation 
rather than defining topics broadly associated with the nu-
clear fuel cycle. Furthermore, it is not clear if the NukeBERT 
language model is publicly available, and the associated 
dataset is not available under a standard open-source 
license.
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3.	 Data

We consider scientific abstracts from the U. S. Department 
of Energy Office (DOE) Scientific and Technical Information 
(OSTI) database [14] obtained in November 2018, amount-
ing to nearly two million abstracts from over 70 years of re-
search results from DOE and its predecessor agencies. No 
pre-processing is performed on these abstracts; they are 
analyzed as they appear in the database.

For fine-tuning, we consider only abstracts labeled with a 
subject category. The possible categories are formalized by 
OSTI, and all products submitted to OSTI are encouraged 
to provide at least one, listing the primary category first. If 
more than one category is specified, we consider only the 
first. In addition to the multi-class labels induced by the 
OSTI subject categories, we formulate binary labels by 
identifying OSTI subject categories that correspond to the 
top level of the IAEA Physical Model [15], which describes 
acquisition pathways. The topics described in the IAEA 
Physical Model include ore mining and milling, pre-conver-
sion, uranium enrichment, post-conversion, fuel fabrication, 
nuclear reactors, heavy water production, and reprocess-
ing of irradiated fuels. Using this criterion, the following 
OSTI topic categories are considered related to the nuclear 
fuel cycle for the binary classifier: nuclear fuels, isotope and 
radiation sources, nuclear fuel cycle and fuel materials, 
management of radioactive and nonradioactive wastes 
from nuclear facilities, specific nuclear reactors and associ-
ated plants, general studies of nuclear reactors, radiation 
chemistry, instruments related to nuclear science and tech-
nology, and nuclear physics and radiation physics. These 
categories are all assigned to the positive class in the bina-
ry classification problem (“NFC-related”, referring to the nu-
clear fuel cycle [NFC]), regardless of the step or steps of the 
Physical Model to which they correspond. The list of all 
OSTI categories and their binary categorization designation 
is provided in Appendix A.

4.	 Experimental Setup

We begin with pre-trained checkpoints implemented in 
HuggingFace’s transformers framework [16], available from 
the HuggingFace model database with the   following   
slugs: roberta-base and roberta-large are base and large 
versions of the RoBERTa model, respectively, and allenai/
scibert_scivocab_uncased is the recommended uncased 
version (i.e., inputs are converted to lower case) of 
SciBERT.

Following Gururangan et al. [5], we perform domain-adap-
tive pre-training. We continue pre-training all three models, 
SciBERT, RoBERTa Base, and RoBERTa Large, on 80% of 
the OSTI abstracts. For the remainder of this manuscript, 
we use the naming convention NukeLM to define RoBERTa 
Large with continued pre-training on OSTI abstracts. The 
remaining 20% of documents are held out from the 

pre-training process and split evenly into two data sets 
(200 K each) to be used for fine-tuning and testing the clas-
sification models. When forming each batch, 512-token 
segments are taken irrespective of document boundaries, 
and 15% of the tokens are masked for prediction. We train 
for 13 K steps with a batch size of 256, for a total of 3.3 M 
samples consisting of 1.7 B tokens (similar in size to the 
corpora in Gururangan et al. [5]). Other hyperparameters 
follow Gururangan et al. [5].

We perform some exploratory analysis of the impact of do-
main-adaptive pre-training on OSTI abstracts, including 
performance metrics and an example of masked word 
modeling.

For fine-tuning, we begin with the six models described 
above: RoBERTa Base and Large and SciBERT, both with 
and without OSTI domain-adaptive pre-training. We then 
follow Gururangan et al. [5] by passing the final layer [CLS] 
token representation to a task-specific fully connected layer 
for prediction (see the transformers documentation for de-
tails). A validation set is held out, consisting of 10% of the 
overall fine-tuning set.

We consider two tasks: multi-class prediction over the orig-
inal OSTI subject categories, and binary prediction over the 
relevance of an abstract’s subject category to one of the 
steps of the nuclear fuel cycle. The fine-tuning data set 
consisted of 198,564 documents, of which 23,268 are re-
lated to the nuclear fuel cycle according to our definition.

A small hyperparameter search is performed on the binary 
task (details in Appendix B), selecting a learning rate of 10-5 

and a batch size of 64. We train for five epochs (14.7 K 
steps), evaluating at 20 checkpoints (about every 750 steps) 
and saving the best model according to loss on the valida-
tion set. Other hyperparameters follow Gururangan et al. [5].

5.	 Results of the Language Modelling Task

5.1	 Metrics

The MLM task is evaluated based on the categorical cross-
entropy between the one-hot true distribution over a mod-
el’s vocabulary and a model’s predicted distribution. This 
MLM loss is shown before and after domain-adaptive pre-
training for each of the three baseline models in Table 1. As 
in RoBERTa-style pre-training, one token per sample is 
masked randomly, without consideration of sub-word sta-
tus, stop words, or other factors.

Continued pre-training improves the performance of RoB-
ERTa Base more than that of SciBERT, to the point where it 
performs better than the much larger RoBERTa without 
continued pre-training. The RoBERTa pre-training strate-
gies may have yielded an easier-to-train model than the 
SciBERT methodologies, but this may be due solely to the 
larger vocabulary size, 50 K tokens for RoBERTa vs. 30 K 
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for SciBERT. Regardless, NukeLM shows improvement 
over RoBERTa Large, and remains the most accurate of 
the models.

Model MLM Loss
RoBERTa Base 1.39
RoBERTa Base + OSTI 1.11
RoBERTa Large 1.13
NukeLM 0.95
SciBERT 1.34
SciBERT + OSTI 1.18

Table 1: Masked language modeling loss, based on categorical 
cross-entropy between true and predicted probability distributions, 
on the evaluation sub-set of the OSTI pre-training data. Lower is 
better. The symbol “+ OSTI” denotes continued pre-training on 
OSTI abstracts. The best performing model is in bold.

Model Top-5 Predictions Score
RoBERTa Base metal 0.252

metals 0.149

uranium 0.145

water 0.130

iron 0.026

RoBERTa Base + 
OSTI

water 0.955

metal 0.008

elements 0.008

metals 0.008

oil 0.003

RoBERTa Large water 0.951

metal 0.013

metals 0.011

fuel 0.004

carbon 0.002

NukeLM water 0.996

metals 0.001

oil 0.001

#water <0.001

metal <0.001

SciBERT metal 0.225

metals 0.117

water 0.068

iron 0.052

argon 0.042

SciBERT + OSTI water 0.929

metal 0.024

metals 0.011

iron 0.003

oil 0.003

Table 2: An example of masked language modeling. Column 2 
contains the top five tokens considered most likely (the true token, 
“water”, is in bold), and column 3 contains the associated 
likelihood scores (the highest confidence for the true token is also 
in bold). The character “#” indicates the token is a sub-word, i.e., 
a prediction of “heavywater” rather than “heavy water”. The symbol 
“+ OSTI” denotes continued pre-training on OSTI abstracts.

5.2	 MLM Example

We present an example of masked language modeling to il-
lustrate the task and performance improvement after do-
main-adaptive pre-training. The bolded word is masked, 
and the models are asked to predict what word should fill 
in the blank.

The use of heavy water as the moderator is the 
key to the PHWR system, enabling the use of 
natural uranium as the fuel (in the form of 
ceramic UO2), which means that it can be 
operated without expensive uranium enrichment 
facilities. [17]

Table 2 summarizes the top five predicted tokens and their 
associated likelihood score from each of the six models af-
ter domain-adaptive pre-training (if any) but before fine-tun-
ing. Before continued pre-training, all three models include 
the correct answer in their top five predictions, but RoBER-
Ta Base and SciBERT predict the more common but incor-
rect phrase “heavy metal,” albeit with low confidence; only 
RoBERTa Large predicts the correct answer, evidence that 
its large size allowed it to learn from pre-training alone 
some subtleties of the nuclear domain that the smaller 
models did not. After continued pre-training, all three mod-
els regardless of size succeed in predicting the correct an-
swer with high confidence.

6.	 Results of Downstream Tasks

6.1	 Multi-Class Classification

The results of fine-tuning of the multi-class classification 
task are presented in Table 3. SciBERT’s advantage over 
RoBERTa Base persists after domain-adaptive pre-training, 
perhaps because its scientific-domain pre-training corpora 
are more closely related to the OSTI task than are RoBER-
Ta’s. However, neither overcomes RoBERTa Large even 
without the added advantage of continued pre-training, 
likely because the latter contains several times more traina-
ble parameters.

Model Accuracy Precision Recall F1-Score
RoBERTa 
Base

0.6745 0.6564 0.6745 0.6603

RoBERTa 
Base + OSTI

0.6972 0.6884 0.6972 0.6863

RoBERTa 
Large

0.7056 0.7008 0.7056 0.7013

NukeLM 0.7201 0.7164 0.7201 0.7168

SciBERT 0.6972 0.6866 0.6972 0.6883

SciBERT + 
OSTI

0.7047 0.6981 0.7047 0.6973

Table 3: Results of fine-tuning on the multi-class classification 
task. Precision, Recall, and F1-scores are an average of all classes, 
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weighted by class size. The best performing model by each metric 
is presented in bold.

6.2	 Binary Classification

The results of fine-tuning on the binary classification task 
are presented in Table 4. Without domain-adaptive pre-
training, SciBERT performs even better than RoBERTa 
Large, possibly because of its more closely related pre-
training corpora. However, unlike in the multi-class task, 
both SciBERT and RoBERTa Base see degraded recall 
(and, in the case of SciBERT, accuracy), outweighed by a 
moderate increase in precision only due to class imbal-
ance. Only NukeLM sees improvement across all meas-
ured metrics, likely due again to its large size. It is worth 
noting that the much smaller RoBERTa Base is able to 
achieve performance comparable to the unwieldy RoBER-
Ta Large via continued pre-training, which may be useful in 
resource-constrained applications.

Model Accuracy Precision Recall F1-Score
RoBERTa Base 0.9506 0.7938 0.7816 0.7876

RoBERTa Base 
+ OSTI

0.9544 0.8237 0.7773 0.7998

RoBERTa 
Large

0.9506 0.7995 0.7722 0.7856

NukeLM 0.9573 0.8270 0.8038 0.8152

SciBERT 0.9548 0.8061 0.7910 0.7984

SciBERT + 
OSTI

0.9532 0.8285 0.7747 0.8007

Table 4: Results of fine-tuning on the binary classification task. 
Precision, Recall, and F1-scores consider NFC-related to be the 
positive class. The best performing model by each metric is 
presented in bold.

Moreover, numerically small improvements in performance 
metrics belie the very large size of the datasets presented 
here. An analyst attempting to filter a corpus as large as 
OSTI into a more manageable size would be well-served to 
choose NukeLM over the other models discussed above; a 
single percentage point change could translate to thou-
sands of relevant papers that would have been missed, or 
irrelevant papers requiring manual inspection. Indeed, this 
use-case motivates a preference for recall (the fraction of 
true positives predicted to be positive) over precision (the 
fraction of predicted positives which are truly positive), fur-
ther widening NukeLM’s advantage over its competitors in 
our quantitative assessments.

6.3	 Performance under Different Training Set Sizes

One reported advantage of domain-adapted language 
models is the ability to fine-tune on smaller numbers of la-
beled examples. We test this ability with the binary classifi-
cation task described above. We randomly select increas-
ingly large proportions of the binary classif ication 
fine-tuning set, ignoring the rest, so that each larger subset 
contains the earlier, smaller subsets. We train the off-the-
shelf RoBERTa Large and NukeLM with the same experi-
mental set-up as in Section 6.2 and track the log-loss com-
puted on the hold-out evaluation set. This metric is 
computed via the Kullback-Leibler divergence, a measure 
of dissimilarity between the true and predicted probability 
distributions over the output categories, averaged over the 
test set. Twenty repetitions with different random seeds are 
performed. For visual convenience, the probability density 
function of each of these sets of repetitions is estimated us-
ing the kernel density estimation technique, analogous to a 
smoothed histogram. Generally, lower log-loss indicates 
better predictions, and greater separation of distribution 

Figure 1: Binary classification performance, measured by log-loss on a hold-out test set, as the training set size is increased, for RoBERTa 
Large (orange) and NukeLM (blue). Hash marks are each of 20 repetitions with different random seeds, while filled areas are kernel density 
estimations.
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density indicates more significant differences. Figure 1 
summarizes the results.

While Table 4 summarizes some performance metrics of 
NukeLM compared to other models on the full fine-tuning 
data set for the binary classification task, this experiment 
provides insight into the potential benefit of using NukeLM 
on other fine-tuning tasks where the amount of labeled 
training data is likely to be on the order of one thousand 
and not one hundred thousand. The domain-adapted mod-
el achieves significantly better performance with smaller 
amounts of data; however, this advantage shrinks as the 
fine-tuning set size increases. This could be the result of 
continued pre-training priming the model for performance 
in this domain. 

Therefore, the question of significance between NukeLM 
and other models is best understood as a function of fine-
tuning training set size. Moreover, Figure 1 shows that even 
though the performance gain decreases with increasing 
amount of fine-tuning data, we still observe superior perfor-
mance using NukeLM with a fine-tuning set of nearly two 
hundred thousand documents.

Interestingly, the disparity between models is less apparent 
at the lowest training set size tested (0.4% of the full cor-
pus, or 754 documents). While NukeLM maintains its supe-
riority, with so few examples used for fine-tuning, significant 
instability is observed over the repetitions. A follow-up ex-
periment implements several strategies for stabilizing fine-
tuning of large language models discussed in Zhang, et al. 
[18], but none have a major impact (see Appendix C for de-
tails) and are not employed further.

6.4	 Qualitative Assessment

Beyond model performance on the MLM task and docu-
ment classification, an important question regarding these 
trained language models is whether any reasonable inter-
pretation can be made of the intermediate representations 
of input examples. While there is not a clear consensus on 
how useful these embeddings can be in providing explana-
tions, with arguments from both sides [19, 20], there is un-
doubtedly some information contained within these trans-
former-based language models because their predictive 
ability is state-of-the-art. So, while a direct interpretation of 
an embedding produced by NukeLM may be questionable, 
the transformation of this high-dimensional space that re-
sults from pre-training should provide some explanation as 
to how prediction was improved.

As a first step toward interpreting the impact of domain-
adaptive pre-training, we consider models fine-tuned on 
the binary classification task and visualize output embed-
dings from the most accurate models, RoBERTa Large 
both with (i.e., NukeLM) and without continued pre-training 
on OSTI abstracts. We use uniform manifold approximation 

and projection (UMAP) [21] with all default parameters to 
project the output corresponding to the special token [CLS] 
down to two dimensions, training separate UMAP projec-
tions for each model. Figure 2 (top row) depicts the result of 
this process performed on a 1000-sample random subset 
of the binary classification task validation set.

In both models, the positive class is generally clustered to-
gether; indeed, both models are able to learn relatively ac-
curate decision boundaries. However, in the version with-
out domain-adaptive pre-training, the cluster looks like a 
single manifold, eventually connecting to the mass of nega-
tive samples like an isthmus. In contrast, continued pre-
training appears to encourage the model to form more 
complicated structures, with an isolated cluster of mostly 
positive samples in addition to a similar but much smaller 
isthmus connected to a large mass of negative samples.

To explore these differences further, we apply BERTopic 
[22], a clustering and topic modeling approach for under-
standing the output embeddings of a transformer model. 
BERTopic also uses a UMAP projection for dimension re-
duction, in this case to 100 dimensions, but then uses hier-
archical density-based spatial clustering of applications 
with noise (HDBSCAN) [23] to cluster documents and a 
class-based TF-IDF (cb-TF-IDF) score for topic modeling. 
TF-IDF stands for term frequency and inverse document 
frequency, a standard method for identifying terms used 
unusually frequently in each document. Here, all docu-
ments within the same cluster are concatenated into a sin-
gle document and then the usual TF-IDF score [24] is com-
puted as follows:

where ti is the frequency of each word in class i, wi is the 
total number of words in class i, m is the number of docu-
ments, and n is the number of classes.

We visualize the BERTopic clusters found in the RoBERTa 
Large binary classification models in Figure 2 (bottom row). 
Recall that the clustering algorithm is applied to the em-
beddings after reducing their dimension to 100; visual in-
spection of the 2-dimensional representation may not fully 
reflect the shape of the BERtopic clusters. The three words 
most representative of each cluster, as determined by the 
cb-TF-IDF model, are listed in Table 5. Without continued 
pre-training, we see seven clusters on a variety of topics, 
from cosmology to biology, with the NFC-related samples 
mostly relegated to a single nuclear cluster or left as outli-
ers. In contrast, with continued pre-training, non-NFC sam-
ples are labeled outliers and nuclear documents are sorted 
into four topics. This provides evidence that continued pre-
training taught the model additional knowledge of the nu-
clear domain, allowing it to characterize different subsets of 
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Figure 2: Visualization of UMAP-transformed output embeddings from RoBERTa Large for 1000 randomly sampled documents from the 
validation set after fine-tuning on the binary classification task, both without (left) and with (right) domain-adaptive pre-training on OSTI 
abstracts, colored by the true binary labels (top) and BERTopic clusters (bottom). Note that the cluster labels for RoBERTa Large and for 
NukeLM refer to different document clusters with correspondingly different topics, though they use the same colors. Each point in these 
plots is a low-dimensional representation of the embedding for a document’s abstract.

Model No. Top-3 Words
RoBERTa Large 1 beam, ion, states

2 coal, fuel, oil

3 films, alloy, materials

4 waste, nuclear, radiation

5 cells, protein, cell

6 soil, acid, conduit

7 dust, galaxies, observations

NukeLM 1 waste, safety, SAR

2 reactor, waste, fuel

3 MeV, nuclei, energies

4 Scattering, interaction, generation

Table 5: Top three representative words for each BERTopic cluster of output embeddings from RoBERTa Large for 1000 randomly 
sampled documents from the validation set after fine-tuning on the binary classification task, both without and with (i.e. NukeLM) 
domain-adaptive pre-training on OSTI abstracts. Column two, the cluster number, corresponds with the legend in Figure 2 (bottom row).
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positive examples, and recognize the irrelevance of other 
distinctions to the fine-tuning task.

7.	 Conclusion and Future Work

In this work, we leveraged abstracts from the OSTI data-
base to train state-of-the-art language models for nuclear-
domain-specific classification tasks and as a general-pur-
pose language model in the nuclear domain. We explored 
a number of base models for transfer learning and applied 
domain-adaptive pre-training to improve performance on 
the down-stream tasks. To the best performing model in 
this process, RoBERTa Large + OSTI, we apply the name 
NukeLM.

We consider the NukeLM language model to be a general-
purpose resource for supporting development of NLP 
models in the nuclear domain. The NukeLM model can be 
leveraged for task training on relatively small labeled data 
sets, making it feasible to manually label training for target-
ed objectives and easily fine-tune the NukeLM model for 
various tasks. As an example, we introduced a binary cate-
gorization of the OSTI subject categories aimed at identify-
ing documents related to the nuclear fuel cycle and fine-
tuned the NukeLM model on this task. This fine-tuned 
classification model can be immediately useful to prioritize 
information or to support NLP workflows in nuclear science 
or nuclear nonproliferation.

The NukeLM binary classification model demonstrated su-
perior performance for the classification task. Because of 
computational constraints, multiple runs of the training pro-
cess were not made to establish the statistical significance 
of the classification metrics, but the large set of training 
data and consistent trends across model types and tasks 
make it unlikely that the rank order of these models would 
change with resampling and retraining. Furthermore, we 
demonstrate that the performance gain may be even higher 
with smaller-scale fine-tuning sets.

Although the performance gains observed were minor, the 
whole story does not lie within the F1-score because our 
qualitative visual assessment of the NukeLM binary classifi-
cation embeddings reveal intriguing structural differences. 
The NukeLM embeddings appear to have more distinct 
clusters and increased separation among clusters, particu-
larly among NFC-related documents. By applying BERTop-
ic to these embeddings, we confirmed that these clusters 
correspond to identifiable topics. Potential future work 
would be needed to quantify these structural changes and 
assess differences among various models, as an in-road 
toward explaining how the models reach their conclusions.

Additional topics for future work involve expanding the 
model training pipeline to include full article text and data 
sets other than OSTI. We will consider expanding the mod-
el vocabulary to better capture a nuclear domain 

vocabulary without losing RoBERTa’s more robust pre-
training, and exploring multilingual capabilities via models 
like XLM-RoBERTa [25].
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Appendix A: OSTI Subject Categories

Label Description NFC Label Description NFC

1 Coal, Lignite, and Peat 44

2 Petroleum 45 Military Technology, Weaponry, and National 
Defense

3 Natural Gas

4 Oil Shales and Tar Sands

5 Nuclear Fuels Y 46 Instrumentation Related To Nuclear Science 
and Technology

Y

7 Isotope and Radiation Sources Y

8 Hydrogen 47 Other Instrumentation

9 Biomass Fuels 54 Environmental Sciences

10 Synthetic Fuels 55

11 Nuclear Fuel Cycle  
and Fuel Materials

Y 56 Biology and Medicine

57

12 Management of Radioactive and Non-Radioac-
tive Wastes From Nuclear Facilities

Y 58 Geosciences

59 Basic Biological Sciences

13 Hydro Energy 60 Applied Life Sciences

14 Solar Energy 61 Radiation Protection and Dosimetry

15 Geothermal Energy

16 Tidal and Wave Power 62 Radiology and Nuclear Medicine

17 Wind Energy

20 Fossil-Fueled Power Plants 63 Radiation, Thermal, and Other Environ. 
Pollutant Effects On Living Orgs. and Biol. 
Mat.21 Specific Nuclear Reactors and Associated Plants Y

22 General Studies of Nuclear Reactors Y 66 Physics

70 Plasma Physics and Fusion Technology24 Power Transmission and Distribution

25 Energy Storage 71 Classical and Quantum Mechanics, General 
Physics

29 Energy Planning, Policy, and Economy
72 Physics Of Elementary Particles and Fields

30 Direct Energy Conversion

32 Energy Conservation, Consumption, and 
Utilization

73 Nuclear Physics and Radiation Physics Y

33 Advanced Propulsion Systems 74 Atomic and Molecular Physics

35 Arms Control 75 Condensed Matter Physics Superconduc-
tivity and Superfluidity

36 Material Science

37 Inorganic, Organic, Physical and Analytical 
Chemistry

77 Nanoscience and Nanotechnology

38 Radiation Chemistry, Y 79 Astronomy and Astrophysics

Radiochemistry, and 96 Knowledge Management and Preservation

Nuclear Chemistry

39 97 Mathematics and Computing

40 Chemistry 98 Nuclear Disarmament, Safeguards, and 
Physical Protection

42 Engineering

43 Particle Accelerators 99 General and Miscellaneous

Table 6: List of OSTI subject category labels, their description where available, and whether they related directly to the nuclear fuel cycle.
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does not appear to hold true here: longer training has the 
opposite effect, and though re-initializing three or four lay-
ers may result in a smaller range with three training epochs, 
the effect mostly reduces the incidence of outliers, so-
called “failed runs”, rather than making most runs more 
predictable. Therefore, we do not employ either technique 
in the main body of this manuscript.

Figure 3: Results of a hyperparameter tuning experiment for 
number of training epochs (horizontal axis) and number of 
reinitialized layers (color), with log-loss shown on the vertical axis. 
Hash marks are each of 20 repetitions with different random 
seeds, while filled areas are kernel density estimations.

Appendix B: Hyperparameter Tuning

A hyperparameter tuning experiment is performed on the 
binary classification task using RoBERTa Large, both with 
and without domain-adaptive pre-training. We perform a 
grid search over maximum learning rates of 1×10-5, 2×10-5, 
and  5×10-5 and minibatch sizes of 16 and 64. Results on 
the validation set are summarized in Table 7. Both with and 
without continued pre-training, a small learning rate and 
large batch size yield the best loss, though the impact on 
accuracy and F1-score is both smaller and less clear.

Appendix C: Stabilizing Few-Shot Fine-Tuning

A further hyperparameter tuning experiment is performed 
on the binary classification task using RoBERTa Large, 
both with and without domain-adaptive pre-training, and 
restricted to only 0.4% of the training set (754 documents). 
Following Zhang, et al. [18], we perform a grid search over 
the number of training epochs (3, 6, 12, and 24) and over 
the number of layers to reinitialize (0 through 6). The layers 
are chosen from the bottom of the model, nearest the final 
classification layer, which is always newly initialized. Twenty 
repetitions with different random seeds are performed. Re-
sults on the validation set are summarized in Figure 3, us-
ing the same metrics and techniques as in Figure 2.

Zhang, et al. [18], suggests that more training epochs and 
reinitializing several layers often stabilizes fine-tuning on 
very small datasets, narrowing the range of results. That 

Model Learning 
Rate

Batch Size Accuracy F1-Score Loss

RoBERTa Large
1 × 10-5

16 0.9545 0.9537 0.1173

64 0.9506 0.9502 0.1081

2 ×1 0-5
16 0.9397 0.9409 0.1568

64 0.9524 0.9523 0.1118

5 × 10-5
16 0.9206 0.9097 0.2260

64 0.9363 0.9338 0.1699

RoBERTa Large + OSTI
1 × 10-5

16 0.9573 0.9568 0.1127

64 0.9573 0.9570 0.0967

2 × 10-5
16 0.9520 0.9516 0.1340

64 0.9557 0.9559 0.0977

5 × 10-5
16 0.9328 0.9279 0.2093

64 0.9525 0.9518 0.1108

Table 7: Results of a hyperparameter tuning experiment for learning rate and minibatch size. F1-scores consider NFC-related to be the 
positive class. The best result for each run is bolded.
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1.	 Introduction

Recently, pre-trained language model representations like 
Bidirectional Encoder Representations from Transformers 
(BERT) [1] have gained extensive attention in the NLP com-
munity and have led to impressive performance in several 
downstream applications. While the applications leveraging 
the knowledge present in the parameters of these models 
are growing at a rapid pace, there has also been lot of re-
search into probing the knowledge contained in these lan-
guage models. In [2], the authors demonstrate an approach 
of using fill-in-the-blank type statements to query the lan-
guage models. The authors claim that “surprisingly strong 
ability of these models to recall factual knowledge without 
any fine-tuning demonstrates their potential as unsuper-
vised open-domain Question Answering (QA) systems”. 
The adoption of language models as knowledge bases has 
also shown several advantages; a survey [3] documenting 
the increasing competence of language models suggests 
that the language models are becoming increasingly better 
in tasks such as natural language understanding, questions 
comprehension and knowledge gap completion. Addition-
ally, publications such as [4], [5] and [6] support the usage 
of BERT models specifically for QA tasks. 

In this work, we are interested in leveraging the BERT mod-
el for open-domain question answering for the nuclear do-
main. Our focus is to develop techniques and methodolo-
gies that will help with nuclear non-proliferation analysis, 
which is otherwise an extremely time-consuming process. 
Nuclear analysts generally go through large documents of 
texts for specific tasks. We believe that developing tools 
that leverage language models for tasks such as (nuclear) 
domain-specific QA will greatly assist nuclear analysts. 

Pre-trained language models that have been trained on ar-
ticles from Wikipedia are unlikely to contain nuclear domain 
specific knowledge. Hence, as a first step we fine-tune 
these models on a domain specific corpus. Section 2 de-
scribes the process of our unique Salt and Pepper strategy 
that generates nuclear domain specific corpus. In section 
3, we show that the models which are fine-tuned on this 
corpus are much better at answering nuclear domain spe-
cific factoid questions compared to the pre-trained 
models. 

Abstract:

Nuclear non-proliferation analysis is complex and 
subjective, as the data is sparse, and examples are rare 
and diverse. While analysing non-proliferation data, it is 
often desired that the findings be completely auditable 
such that any claim or assertion can be sourced directly to 
the reference material from which it was derived. Currently 
this is accomplished by analysts thoroughly documenting 
underlying assumptions and clearly referencing details to 
source documents. This is a labour-intensive and time-
consuming process that can be difficult to scale with 
geometrically increasing quantities of data. In this work, we 
describe an approach to leverage bi-directional language 
models for nuclear non-proliferation analysis. It has been 
shown recently that these models not only capture 
language syntax but also some of the relational knowledge 
present in the training data. We have devised a unique Salt 
and Pepper strategy for testing the knowledge present in 
the language models, while also introducing auditability 
function in our pipeline. We demonstrate that fine-tuning 
the bi-directional language models on domain specific 
corpus improves their ability to answer domain-specific 
factoid questions. Our hope is that the results presented in 
this paper will further the natural language processing 
(NLP) field by introducing the ability to audit the answers 
provided by the language models to bring forward the 
source of said knowledge.

Keywords: natural language processing, open domain question 
answering, bi-directional language models, nuclear proliferation 
detection
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subject, item, and location as fill-in-the-blank placeholder 
tokens. For example, one of the sentences in our “Carrier-
Sentences” list is “[WHO] also provided information on the 
[Y] research and development activities at [WHERE]”. 

The [WHO] in the sentence is replaced by chosen token 
representing an individual from the SQuAD dataset. The 
[WHERE] in the sentence is replaced by chosen token rep-
resenting a location from the SQuAD dataset. Finally, the [Y] 
in the sentence is replaced by a random item from the 
“Items Lists”. Figure 1 provides an example of the salting 
process for one of the five categories. There are five differ-
ent [WHO]s, [WHERE]s, and [Y]s which are created to cor-
respond with the different domains listed above. Additional-
ly, when compiling these sentences, we also indicate how 
much “Salt” to add to the SQuAD dataset for each domain. 

For each specified [WHO] or [WHERE] paragraph sections 
within the SQuAD dataset, the “Salting” code takes each 
[WHO] or [WHERE] section and puts them into lists. Each 
section then selects a random paragraph and splits it into 
sentences. Then, a “Salt” sentence is inserted into a ran-
dom location (between split sentences) in the paragraph 
and recombines the paragraphs. Again, this process oc-
curs for each of the five subject-specific “Item Lists”. Once 
the specified number of paragraphs is “Salted” for each list, 
they are normalized and recombined with the remaining 
SQuAD paragraphs. 

Auditability of a language model can be an important part of 
an analytic process, especially when it relates to data which 
is normally prepared by an analyst – as the analysis must 
point to the evidence accompanying the analytic findings. 
Most Machine Learning (ML) models do not contain this trail 
of evidence and are often referred to as “black-boxes”. The 
basic idea of auditability is to retrieve the documents from 
the training corpus that contain evidence for the model’s 
answer. Our approach to auditability is to first convert the 
questions and the context paragraphs into embedding vec-
tors (a real-valued vector that represents the individual 
words in a predefined vector space). We experiment with 
approaches such as TF-IDF vectorizer [7] and Sentence 
BERT [8] to compute the embedding vectors. The embed-
ding vector of the context paragraph that contains evidence 
for the answer will be closest to the embedding vector of 
the question in the vector space. Our detailed methodology 
of using these approaches and technical results have been 
summarized in the section 4 in the paper.

2.	 Experimental Set-Up

2.1	 Data creation

We used the Stanford Question Answering Dataset 
(SQuAD) as the starting point for building out the dataset 
which would later be used in our experimentation. SQuAD 
is “a reading comprehension dataset, consisting of ques-
tions posed by crowdworkers on a set of Wikipedia arti-
cles, where the answer to every question is a segment of 
text, or span, from the corresponding reading passage, or 
the question might be unanswerable [9].” Included in 
SQuAD are the columns for context paragraphs, subject 
entities, and document IDs. This data contains over 20,000 
rows which comprise the entire original SQuAD dataset. 
The next step is to “Salt” subject specific paragraphs by 
adding domain specific sentences into randomly selected 
subject specific paragraphs to introduce the knowledge we 
would later probe.

2.2	 Salt: Terms in Context

The process for “Salting” starts with the creation of five lists 
relating to the domain specific subject. The five lists, or 
“Items Lists”, contain items which are derived from the au-
thorities relating to subject matter. These include:

•	Nuclear Weaponization; [10]

•	Nuclear Fuel Fabrication; [11]

•	Nuclear Gas Centrifuge; [12]

•	Methamphetamine; [13] and finally, 

•	Silly Stuff – our own creation of unrelated words.

These items are then randomly selected from the list and 
populated into another list known as “Carrier-Sentences”. 
The sentences in the “Carrier-Sentences” list contain the Figure 1: Flowchart depicting Salting process.
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k can range from 1 to the maximum number of tokens in 
the BERT vocabulary (30,522). It is often beneficial to look 
at more than just the top 1 token predicted by the model. In 
all the results presented in section 3, the value of top k is 
10.  These tokens are then converted/decoded into associ-
ated words using the tokenizer.decode function.

3.	 Results

For the purposes of evaluating our language model, we de-
veloped a set of cloze-style probe questions. Table 1 below 
lists some probe questions that are used to test the mod-
els. The response of the model to <tokenizer.mask_to-
ken> is treated as the predicted answer. We clearly see 
from Table 1 that the fine-tuned models that have been 
trained on domain-specific data are much better suited for 
domain-specific knowledge extraction. They not only pro-
vide the right answer to the probe question, but also asso-
ciate those answers with a high probability.

To quantitatively assess the performance of fine-tuned lan-
guage models for question answering, we performed sev-
eral evaluations, which are illustrated in this section. In each 
of the evaluations, we considered the top 10 Recall to be 

2.3	 Pepper: Terms Without Context

In subsequent trials, our team decided to add meaningless 
sentences, or “Pepper”, into the dataset to eliminate acci-
dental knowledge recall. The “Pepper” sentences utilize the 
same [Y] as in the “Salted” sentences but without any men-
tion of the [WHO] or the [WHERE]. 

For example, one of the meaningless sentences is “[Y] is 
more expensive than previously understood.” Once the 
meaningless sentences are created, the code filters all the 
previously “Salted” SQuAD data and ignores the “Salted” 
sentences – in order to avoid “Peppering” the “Salted” sen-
tences. The code “Peppers” the unSalted [WHO] or 
[WHERE] paragraphs, at random. The “Pepper” is added 
to eliminate any possibility that the item being mentioned in 
the text is being recalled when unrelated information sur-
rounds it in proximity of the text. We could then make sure 
that the item is being recalled by the model based on ro-
bust knowledge retention.

2.4	 Train: Domain Informed Probes and Benchmarks

Once the data is prepared, we create two model versions 
for our experiment: (1) a fine-tuned version of the BERT 
base model; and (2) a standard, pretrained BERT model. 
Both of these models are compared when evaluating per-
formance of Salting technique.

Our approach for developing the fine-tuned language mod-
el involved training BERT with a batch size of 8, and drop-
out of 0.1; this means that for a training set consisting of 
about 20,000 textual examples, the model parameters are 
updated every 2,500 examples or so. We further initialize 
training to include an initial learning rate of 0.00005, follow-
ing a linear learning rate schedule without weight decay. Fi-
nally, network weights were updated using Adam Optimiz-
er. We’ve selected this training protocol after much trial and 
error, and we’ve found these particular settings to produce 
the most fruitful model for our experiments.

All pretrained models are obtained through the python 
HuggingFace Transformers library [14]. The fine-tuned 
models are trained within an Azure Databricks environment 
using a single GPU instance (NVIDIA Tesla V100 GPU) from 
an NCv3-series virtual machine. As a baseline comparison, 
we also evaluate the performance of the stand-alone BERT 
base model, without any fine-tuning. 

2.5	 Query: Language Model Probing

Language model probing is a way to assess the quality of 
the trained model by testing it against sample questions. 
The process for probing begins with defining a test ques-
tion with a {tokenizer.mask_token} as the mask token, in-
dicating which part of the sentence needs to be deter-
mined by the language model. The probe then looks at the 
top k tokens predicted by the language model for the  
{tokenizer.mask_token} in the test question. The value of 

Probe 
Question

Pre-Trained 
Model 
Answer 
(Predicted 
Probability)

Fine-Tuned 
Model 
Answer 
(Predicted 
Probability)

Correct 
Answer

bellows seal is 
fabricated at 
<tokenizer.
mask_token>

Mt (0.13) Boston (0.84) Boston

hydrogen 
sulphide is 
produced at 
<tokenizer.
mask_token>

pH (0.06) Detroit (0.74) Detroit

bellows seal is 
developed at 
<tokenizer.
mask_token>

Approx. (0.08) Boston (0.95) Boston

cylindrical 
rotors is 
located at 
<tokenizer.
mask_token>

Approx. (0.15) Houston 
(0.41)

Houston

bellows seal is 
owned by 
<tokenizer.
mask_token>

Google 
(0.016)

Tito (0.46) Tito

hydrogen 
sulphide was 
designed by 
<tokenizer.
mask_token>

Siemens 
(0.04)

Whitehead 
(0.73)

Whitehead

Table 1. Probing Results of Pre-Trained and Fine-Tuned Models.
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(shown by the orange curve in the Figure 2) gives a boost 
to the recall metric. The best performance is shown by the 
red curve in the Figure which corresponds to the strategy 
of probing the fine-tuned models, rolling up the responses 
across the different probe questions and computing the 
difference with the pre-trained models. Overall, our results 
show that the probing strategy is a critical factor that influ-
ences the recall ability of the language models. 

3.2	 Performance Comparison on WHO and WHERE 
Questions

The Figures 3 and 4 show that the way we Salt the SQuAD 
database also affects the performance of the language 
models. Specifically, we find that Salting the WHO para-
graphs leads to a better performance on the WHERE probe 
questions and vice-versa. It appears from these figures that 
the performance of language models as knowledge bases 
and the way they form semantic associations between the 
different tokens can be greatly influenced by the Salting 
strategy of the training corpus.

3.3	 Performance on Salt and Pepper Data

As mentioned earlier, we also experimented with adding 
“Pepper” sentences (sentences that are out-of-context) to 
our training corpus. Figure 5 above shows the performance 
of the language models that are trained on this corpus. For 
this experiment we “Salted” and “Peppered” the WHERE 
paragraphs. As expected, the performance on the WHO 
probe questions is better. Additionally, comparing Figures 3 
and 4, we see that the presence of “Pepper” sentences 
does not deteriorate the recall ability of the language mod-
els. This shows that the language models are robust to the 
presence of the confusing “Pepper” sentences in the train-
ing corpus.

the performance metric. Apart from quantitative assess-
ment, these evaluations also shed light on several qualita-
tive aspects of the performance of language models for 
questions answering, which are discussed below.

3.1	 Probing Methodology

We experimented with several probing strategies for knowl-
edge extraction from the language models. Figure 2 shows 
the performance of the different fine-tuned models for the 
different probing strategies. The blue curve which shows 
the least recall ability of the language models corresponds 
to the strategy of probing only the fine-tuned models. We 
observed that probing the fine-tuned models and comput-
ing the difference of the results with the pre-trained models 

Figure 2. Effect of Probing Strategies on Performance.

Figure 3. Model Performance – Salting WHO Paragraphs. Figure 4. Model Performance – Salting WHERE Paragraphs.
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4.3	 Sentence BERT Embeddings

Finally, we investigated the use of Sentence BERT architec-
ture to obtain the embeddings for both the contexts and 
the questions. Sentence BERT is a modification of the off-
the-shelf BERT architecture that computes semantically 
meaningful sentence embeddings. Of all the Sentence 
BERT architectures, we found that ‘distilroberta-base-para-
phrase-v1’ gave us the best results. These results are sum-
marized in Table 2.

4.4	 Results

The first row in Table 2 below shows the auditability results 
on unSalted SQuAD dataset. We used development set of 
SQuAD database for this evaluation. Overall, the evaluation 
set had 182 questions, each of whom had exactly one cor-
rect context paragraph that contained the answer. The au-
ditability task was to then retrieve the context paragraph 
that contained the correct answer for every question.

Additionally, the second row in Table 2 below shows the au-
ditability results on Salted SQuAD dataset. For these evalu-
ations, we used 85 questions and a set consisting of 160 
Salted context paragraphs. For each of the 85 questions, 
there were 32 Salted paragraphs that contained the correct 
answer. The auditability task was then to retrieve one of the 
correct 32 Salted paragraphs for every question.

Dataset TF-
IDF

BERT tokens average 
across 6th layer

Sentence 
BERT

UnSalted 
SQuAD

0.91 0.74 0.91

Salted SQuAD 1.0 0.27 0.82

Table 2. Auditability metrics (Top 1 Recall). 

5.	 Conclusion and Future Work

In this paper we demonstrated a method for testing the 
ability of language models to answer nuclear domain spe-
cific questions, while simultaneously introducing the audita-
bility function in the pipeline. Our results demonstrate that 
language models that have been fine-tuned on domain 
specific corpus are much better suited for domain specific 
knowledge extraction compared to the pre-trained models. 
We have also shown that the probing methodology and the 
“Salting” strategy can greatly influence the ability of lan-
guage models to answer domain-specific factoid ques-
tions. We have consistently observed that Salting the WHO 
paragraphs gives a better performance on WHERE ques-
tions and Salting the WHERE paragraphs gives a better 
performance on WHO questions. We think that the differ-
ence in performance is mainly due to the different Salting 
strategies. It appears that the way language models form 
semantic associations between tokens greatly depends on 
how we salt the corpus. In the future we would like to probe 

4.	 Audit

Auditability is a way to provide more insights into how the 
model predicted a particular answer to have an end-to-end 
analytical process. The basic idea of the auditability pro-
cess is to look for similarities between embedding vectors 
of the questions and those of the contexts in the corpus. 
The contexts which are most similar to the questions are 
then retrieved. To generate the embeddings, we experi-
mented with three techniques that are described below.

4.1	 TF-IDF Vectorizer

Term Frequency — Inverse Document Frequency (TF-IDF) 
is a popular technique to transform textual data into mean-
ingful numeric representation. Algorithmically, TF-IDF as-
signs high frequencies to those words that are more fre-
quent in a document but not across all the documents in a 
corpus. For our experiments, we used the TF-IDF Vectoriz-
er from scikit-learn library [15] to obtain the embeddings of 
contexts and questions. The TF-IDF Vectorizer tokenizes 
the documents, learns the vocabulary and inverse docu-
ment weights, while also helping to encode the new docu-
ments. We use cosine similarity as a distance metric in our 
experiments.

4.2	 BERT Embeddings

We also experimented with Transfer Learning approach by 
leveraging a pre-trained BERT model to obtain embeddings 
for both the contexts and the questions. A pre-trained 
BERT model provides embeddings for every token in a par-
agraph. We used the average of embeddings of all the to-
kens in the different BERT layers as a representative em-
bedding for both context and the questions. From our 
experiments, we found that averaging the tokens from the 
6th layer gave the best performance. These results are 
summarized in Table 2.

Figure 5. QA  Model Performance – Salting & Peppering WHERE 
Paragraphs.
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Alexander M. Rush. “Transformers: State-of-the-Art 
Natural Language Processing.” . In Proceedings of the 
2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations (pp. 38–
45). Association for Computational Linguistics, 2020.

[15] 	 Pedregosa, F., G., Varoquaux, A., Gramfort, V., Michel, 
B., Thirion, O., Grisel, M., Blondel, P., Prettenhofer, R., 
Weiss, V., Dubourg, J., Vanderplas, D., Passos, M., 
Brucher, M., Perrot, and E., Duchesnay. “Scikit-learn: 
Machine Learning in Python”.Journal of Machine 
Learning Research 12 (2011): 2825–2830.

[16] 	 Lee Burke et al., “NukeLM: Pre-Trained and Fine-
Tuned Language Models for the Nuclear and Energy 
Domains,” ArXiv:2105.12192 [Cs], May 25, 2021, http://
arxiv.org/abs/2105.12192.

[17] 	 Wen Tai et al., “ExBERT: Extending Pre-Trained Mod-
els with Domain-Specific Vocabulary Under Con-
strained Training Resources,” in Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020 
(EMNLP-Findings 2020, Online: Association for Com-
putational Linguistics, 2020), 1433–39, https://doi.
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into the multi-headed attention layers of these models to 
better understand this observation.

For the task of auditability, we only presented results on a 
subset of the corpus in this paper (Table 2). In future research, 
we would be interested in evaluating the auditability technique 
on the entire “Salted” SQuAD database. We suspect this 
would be a particularly challenging task for document retrieval 
since the entire SQuAD database consists of more than 
20,000 context paragraphs. We think that further fine-tuning 
the Sentence BERT models on the Salted SQuAD database 
and then computing the embeddings for the questions and 
the context paragraphs will be beneficial in that case.

An opportunity that is open for future research is to lever-
age language models like NukeLM [16] that have been pre-
trained on nuclear domain data. Another area that could be 
further explored is the use of models like ExBERT [17] 
which facilitate inclusion of nuclear domain specific words 
in the vocabulary of the model for the task of domain spe-
cific question answering.
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