
10

ESARDA Bulletin, Volume 65, December 2023

List Mode Inference Using Linear Classifiers for Nuclear 
Arms Control Verification

Eduardo Padilla 1,2, Heidi Komkov 2, Christopher Siefert 2, Adam Hecht 1, Ryan Kamm 2, 
Kyle Weinfurther 2, Jesus Valencia 2

1 University of New Mexico, Department of Nuclear Engineering, Albuquerque, NM, USA, 87131
2 Sandia National Laboratories, PO Box 5800, Albuquerque, NM, USA, 87185

1. Introduction

Potential future nuclear arms control treaties are likely to re-
quire much more rigorous and intrusive measures for verifi-
cation as nuclear weapons states move beyond current ab-
sence verification methods such as those employed in New 
START (Evans, 2021). As such, methods more advanced 
than neutron detection above a threshold to confirm the 
presence or absence of a nuclear warhead or component 
are likely to be a central function of a verification regime. 
While standard methods for nuclear assay such as gamma 
ray spectroscopy and/or neutron measurements are largely 
capable of performing this function, the amount of informa-
tion revealed during the analysis is likely too high for a nu-
clear arms control regime; nuclear warhead design infor-
mation can be inferred from these measurements, thus 
potentially disclosing sensitive strategic information to a 
treaty partner. Hence, a critical need for nuclear arms con-
trol verification is a method that produces high-confidence 
assessments without revealing sensitive information such 
as can be inferred from gamma ray spectra or detailed 
neutron signatures.

1.1 Background

There are numerous approaches to protecting sensitive in-
formation, also referred to as information barriers (IBs). Fig-
ure 1 illustrates several types of information barriers which 
can be used within a verification process to act as informa-
tion reducers and prevent the passage of sensitive informa-
tion (red side) while allowing a reduced or transformed sub-
set of non-sensitive information to proceed (black side). 
The approach described in this paper is a form of an intrin-
sic information barrier, wherein the pulses from a gamma 
and/or neutron detector are analyzed immediately and indi-
vidually, without the creation or storage of accumulated 
spectra, dose rates, or other potentially sensitive informa-
tion. This type of information barrier is complementary to 
other approaches, such as physical encryption, zero 
knowledge protocols (ZKP) and electronic information 
barriers.

Yan and Glaser (Yan & Glaser, 2015) provide a comprehen-
sive review of past warhead verification systems incorpo-
rating several types of information barriers. Additional sys-
tems (Hamel, 2018) (White, 2012) (Wolford & White, 2000) 
have been included for background consideration in this 
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paper and a subset are summarized in Table 1, categorizing 
them according to the proposed conventions in Figure 1.

Table 1 categorizes historically-developed arms control ver-
ification concepts and systems by three primary design as-
pects: 1 – template or attribute verification approach, 2 – 
active or passive measurement and 3 – the type of 
information barrier employed. Each of these design as-
pects have associated strengths and weaknesses and 
cannot be truly evaluated independent of a well-defined 
treaty regime. For example, plutonium absence verification 
can reasonably be expected to be achievable using a much 
simpler method (gross neutron counting (Harahan, 1993)) 

than neutron tomographic imaging combined with ultra-
high-resolution gamma spectroscopy; the simplest pro-
posed method of performing a specific treaty verification 
task has a higher likelihood of negotiated implementation.

Compared to attribute verification systems, template verifi-
cation systems are often considered easier to implement, 
since these can be designed to be performed behind an in-
formation barrier, sometimes requiring little to no a priori 
knowledge about the treaty accountable item (TAI). All that 
matters is that a TAI matches a measurement to a refer-
ence TAI or “golden copy”. The crux of template-based ver-
ification systems (TRIS, NMIS, CIVET, CONFIDANTE, 

Figure 1 – Information Barriers within a Verification Process

System Description (Template/Attribute)
Active 

Interrogation
Information 

Barrier

TRIS (Seager, et al., 2001)
Low resolution gamma spectrum 

template
Passive Electronic IB

TRADS (Mitchell & Tolk, 2000)
HPGe-based Pu attribute measurement 

(minimum mass and enrichment)
Passive Electronic IB

(F)NMIS (Hamel, 2018) Fast neutron template imaging Active N/A

AVNG (Langner, et al., 2002)
Neutron Multiplicity and HPGe-based 

attribute measurement
Passive Electronic IB

3G-AMS (Dale, et al., 2009)
HPGe and Neutron slab detector based 

attribute measurement
Passive Electronic IB

UKNI (Chambers, et al., 2010)
HPGe-based plutonium attribute 

measurement
Passive Electronic IB

INPC (Hamel, 2018) HPGe-based attribute measurement Passive Electronic IB

CIVET (Vanier, et al., 2001) HPGe-based gamma spectrum template Passive Electronic IB

CONFIDANTE (Marleau & Krentz-Wee, 
2020)

Fast neutron coded aperture template Passive ZKP

Princeton ZKP (Glaser, Barak, & 
Goldston, 2014)

Neutron radiography template Active ZKP

Princeton/MIT (Hecla & Danagoulian, 
2018) (Engel & Danagoulian, 2019)

Nuclear resonance template Active
Physical 

Encryption/ZKP

Table 1 – Summary of Previous Arms Control Verification Systems
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Therefore, this analysis is generally performed behind an 
electronic information barrier to protect against the release 
of sensitive measurement data to an inspector.

While template verification systems can more easily limit 
the generation of sensitive information, they are completely 
reliant on the veracity of the golden copy template, creating 
a single point failure. On the other hand, attribute verifica-
tion systems can be designed to confirm the veracity of 
TAIs (or even golden copies themselves), while relying on 
electronic information barriers and more rigorous authenti-
cation and certification needs. Depending on the specific 
treaty regime and agreed upon implementation protocols, 
either a template, attribute or combined approach may be 
most effective.

When considering passive measurements versus active in-
terrogation, the simplest proposed solution to address the 
needs of the verification regime is more likely to result in 
successful implementation negotiations, as seen in INF ne-
gotiations (Harahan, 1993). As nuclear arms control reduc-
tion treaties progress from New START-like treaty regimes 
(absence verification), more intrusive inspection approach-
es are likely to be necessary. If the nature of nuclear arms 
control treaties follows a progressive track towards com-
plete global nuclear disarmament, solutions spanning mul-
tiple levels of intrusiveness and complexity will be required. 
It follows that the complexity of system hardware is directly 
proportional to the level of intrusiveness of the inspection 
technology, and also to the difficulty of performing authen-
tication and certification on inspection equipment. Active 
interrogation systems will need to be authenticated by the 
inspection team and certified by the hosts as whole, mean-
ing additional effort for developing trust in imaging sources 
(linacs, nuclear reactors, x-ray generators, etc.) will have 
additive effort and the potential for reduced trust as they in-
troduce more attack vectors (each piece of hardware must 
be authenticated and certified down to individual electronic 
components. (Greenberg, 2019))

When designing information barriers, having the IB further 
to the left (Figure 1) lowers the number of potential vectors 
for sensitive host information exfiltration. Once the sensitive 
information is stripped out it cannot be regenerated. Thus, 
from a host perspective, pushing the IB as far to the left as 

Princeton ZKP, Princeton/MIT), then, is the authenticity of 
the golden copy, and how the inspecting party can attain 
confidence in the item presented as a golden copy. Owing 
to the difficulty of certifying a golden copy, this huge con-
sideration is often deferred as part of future work.

In an attempt to address the golden copy obstacle, Hecla 
and Danagoulian (Hecla & Danagoulian, 2018) propose a 
method by which a golden copy warhead is selected at 
random and with minimal notice from a fielded system. 
Even this approach has many potential pitfalls, as this ap-
proach could only work for ground-based ICBMs subject 
to overhead imagery and persistent monitoring; submarine/
ship launched warheads, as well as the myriad bombs, 
cruise missiles and tactical nuclear munitions are more 
easily moved and not subject to persistent monitoring by 
design. During the Intermediate Range Nuclear Forces 
Treaty (INF), inspection notices gave up to six hours of time 
to the host country to allow an inspection (Harahan, 1993), 
ample time for golden copy spoofs to be emplaced. Fur-
ther, the method proposed by Hecla and Danagoulian was 
to scan only the pit of a warhead, due to the possibility of 
neutron and x-ray/gamma ray shielding materials being 
present in a fully assembled nuclear weapon. The disas-
sembly of a nuclear weapon is a highly sensitive operation 
and would need to be performed in private, thus allowing 
the host country to modify (e.g., smash, shield, or other-
wise obfuscate the true form and signature) the pit before 
placing in a black box for subsequent golden copy tem-
plate generation. Combined with undisclosed and host-
controlled anti-mask templates, a flattened and shielded pit 
used as a golden copy could then allow for simple spoofing 
of warhead dismantlement.

This inherent difficulty in golden copy certification demon-
strates the value of attribute verification systems. Instead of 
blindly comparing two items, these systems seek to verify 
one or multiple signatures consistent with various charac-
teristics (attributes) of a warhead, such as the presence of 
weapons grade nuclear material, certain isotopic ratios, ge-
ometric extent of intrinsically radioactive material, minimum 
mass of fissile material, etc. To achieve this, attribute verifi-
cation systems generally require the measurement and 
analysis of more sensitive information, such as gamma 
spectra, neutron multiplicity and/or radiographic imaging. 

Figure 2 – List-Mode Linear Classifier Architecture
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the verification process allows is desirable, and incorporat-
ing redundant IB’s of independent design will add trust.

In contrast, an inspector may gain higher confidence in a 
measurement by performing rigorous analysis on the raw 
signatures of TAI’s with an IB as far to the right as possible, 
depending on the verification technologies involved. These 
competing design constraints result in the development of 
vastly different approaches to the challenge of nuclear war-
head verification.

Instead of using an electronic information barrier to sepa-
rate sensitive data from an output display (far right in Figure 
1), the method we propose is inherently limited in the 
amount of information it collects. Individual gamma ray de-
tection pulses from a detector are input into the linear clas-
sifier individually, and only four floating point values are 
saved (Figure 2). The gamma ray spectrum, which is sensi-
tive information, is never collected.

Figure 2 illustrates our linear classifier system architecture, 
which will ingest a pre-defined number of pulses in list-
mode, storing only running scores for a small number of 
classes.

1.2 Scope

The concept of operation for this method in a treaty verifi-
cation scenario is that a spectroscopic gamma detector 
system would be developed to run exclusively in list-mode 
operation and set to process a pre-defined number of 
pulse events sequentially. Ingesting a set number of pulses 
is a key normalization function allowing for source strength 
information to be largely obviated and relevant radiation 
signatures appropriately weighted. However, administrative 
controls for minimum and maximum count rates would be 
necessary to guard against highly shielded sources or de-
tector saturation, respectively. During a verification pro-
cess, the detector system would be set up to measure the 
treaty accountable item, and at the end of collection the 

highest class score would be used to determine the type of 
item being measured (Figure 2).

This paper does not directly address authentication and 
certification concerns, as that will be done in future work. 
The primary goal of this paper is to present a novel infor-
mation barrier and algorithmic approach to warhead verifi-
cation. As discussed in the previous section, there has nev-
er been a complete, end-to-end verification technology 
solution to the many problems posed by nuclear arms re-
duction treaties; many systems have been developed to 
address specific issues at various points in a more broadly 
comprehensive nuclear arms control treaty. This system is 
envisioned as a flexible option capable of tailored attribute 
measurement.

2. Approach

The necessarily transparent nature of nuclear arms control 
verification research and development often requires the 
use of publicly available and non-sensitive datasets. While 
more constrained (and thus potentially more sensitive) 
datasets might yield better algorithm performance, the abil-
ity to co-develop and share methods and approaches is 
highly prioritized in the arms control verification research 
community. For this initial proof of concept, our team used 
an algorithmic approach to generate synthetic spectra, 
which were fed into a linear classifier described in the fol-
lowing sections.

2.1 Data Generation

GADRAS, a software suite developed to perform detector 
response modeling, is used to generate realistic gamma-
ray spectra for a multitude of potential detectors to nearly 
any radiological source of interest (Thoreson, et al., 2019). 
With ongoing development for over three decades, the 
built-in library of radioisotopic sources is robust, and rapid 
radiation transport modeling allows users to generate 

Table 2 – Fissile materials and their associated parameters (Nelson & Sokkappa, 2008)

Material
Very Highly 
Enriched 
Uranium

Highly Enriched 
Uranium (20-85%)

Weapons 
Grade Pu

Reactor Grade 
Pu 33 MWd/kg

Reactor 
Grade Pu 65 

MWd/kg

233U Am Np

Composition 
(weight %)

234U, 0.70
235U, 85-92

236U, 0.3
238U, rest

234U, 0.70
235U, 20-85

236U, 0.3
238U, rest

236Pu, 5e-9
238Pu, 0.015
239Pu, 93.63

240Pu, 6.0
241Pu, 0.355

236Pu, 3e-8
238Pu, 1.2

239Pu, 59.0
240Pu, 24.0
241Pu, 11.8
242Pu, 4.0

236Pu, 4e-8
238Pu, 4.6

239Pu, 49.36
240Pu, 23.92
241Pu, 12.49
242Pu, 9.63

232U, 3e-4
233U, rest

Am Np

Age (y) 0 - 65 0 - 65 0 - 20 0 - 20 0 - 20 0 - 5 0 - 20 0 - 20

Mass (kg) 1 - * 1 - * 0.5 - 10 1 - 13 1 - 13 1 - 16 1 - 60 1 - 60

Density (g/cc) 18.95 18.95 15.75 15.75 15.75 18.95 12.0 20.45
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simulated spectra for fairly complex sources. Users can 
specify radiation emitting materials as well as shielding ma-
terial layers in arbitrary configurations. The catalogue of 
training data used in this study comprises two principal 
classes of simulated sources: nuclear material and nui-
sance sources.

A method for generating random sources containing vari-
ous forms of nuclear material is described by Nelson and 
Sokkappa (Nelson & Sokkappa, 2008). Following the algo-
rithm for generating nuclear threat objects in this “Spanning 
Set” paper, tens of thousands of randomly generated fissile 
and fissionable material objects were created as GADRAS 
1D models and transported to produce simulated gamma 
ray spectra. Material age and isotopic ratios were sampled 
as prescribed by the algorithm and outlined in Table 2. 
Some targeted model generation was performed to allow 
for class balanced training, e.g., the branching ratio speci-
fied for models containing two layers of fissile material was 
10%, and of these many were supercritical and therefore 
not usable.Table 2 – Fissile materials and their associated param-
eters (Nelson & Sokkappa, 2008)

Nuisance sources encompass 184 radionuclides contained 
in GADRAS’s built-in library; most commonly-known medi-
cal, industrial, and natural radioisotopes are available for 
simulating detector responses. These radionuclides were 
randomly selected and grouped up to three at a time, in 
varying activities from 10 mCi to 1 mCi. Modeled as point 
sources, these mixed isotope “cocktails” were then placed 
inside randomly generated layers of shielding as prescribed 
in the “Spanning Set” paper (Nelson & Sokkappa, 2008). 
The product of this data generation process is a continu-
ously growing library (over 90,000 spectra at the time of 
writing this paper) of highly-realistic gamma ray spectra 
representing a very diverse set of medical, industrial and 
nuclear radiological sources of varying strength and shield-
ing configurations.

2.2 Linear Classifier

The requirement to not store a full spectrum, even tempo-
rarily, necessitates processing each pulse as it arrives to 
the classifier. Instead of constructing a spectrum – sum-
ming the data in energy bins before it enters the classifier – 
we instead apply classifier weights to each pulse, keeping a 
running sum of the classifier’s output. Notably, this is in-
compatible with typical classification algorithms such as 
neural networks with nonlinear activations, because for a 
nonlinear function , the function of a sum is not necessar-
ily equal to the sum of the function for scalar inputs  

 for scalar inputs . List-
mode processing can be done with models that have no 
nonlinear elements, such as linear classifiers.

3. Theory

A linear classifier is a linear mapping of inputs  to output 
scores , which can be described in terms of vectors rep-
resenting sets of data and outputs as: 

       (1)

where  is a vector of inputs,  is a matrix of weights,  is 
a vector of biases, and  is a vector of output scores. The 
weights and biases are tunable parameters, which are 
trained using an optimization algorithm such as stochastic 
gradient descent. During inference, the predicted output 
class is determined by the index of the maximum value in 

the vector of output scores, . The desired output ( ), also 
called the ground truth, is represented by a vector of zeros 
with 1 in the index of the true class.

Linear classifiers have the advantage of being highly inter-
pretable, which is useful in an arms verification context. The 
input-output mapping is plainly shown by the weights. 
There are several complementary interpretations of the 
weights: the first is that they define templates onto which 
inputs are projected. A dot product of an input onto a tem-
plate that is similar to it results in large output magnitude. 
The second interpretation is that the weights and biases 
are slopes and intercepts of decision planes in feature 
space, in which every input is a point. The planes make bi-
nary separations of the points into classes.

To train machine learning models, data is separated into a 
training set with which the model’s weights and biases are 
adjusted, a validation set used to monitor the model’s per-
formance during training, and a test set used to measure 
the model’s final accuracy. The weights and biases are ran-
domly initialized. The output of each training example is 
computed, and a loss function quantifies the error between 
the computed output scores and the ground truth (the de-
sired output). A common choice of cost function in a classi-
fication task is categorical cross-entropy loss. First, the 
softmax function, s, (also called the normalized exponential 
function) is computed over the scores, , converting them 
to normalized probabilities: 

  (2)

where the sum is taken over C output classes. Then the 
cross-entropy (CE) between the softmax output and the 
ground truth is computed: 

   (3)

Because  is a vector in which there is a single nonzero en-
try of value 1, the sum can effectively be removed from the 
equation, thereby making equation (4) the full categorical 
cross-entropy loss function, where  is the output in the 

index of the true class as given by . .
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  (4)

In training, the weights and biases are adjusted to minimize 
the loss function by taking steps in the direction of the 
downward gradient of the loss function with respect to 
each tunable parameter. Despite the simplicity of our mod-
el, optimization is difficult because the inputs to the linear 
classifier are poorly-conditioned: gamma-ray spectra have 
significant differences in the orders of magnitude of their in-
put features, and due to constraints of our algorithm, no 
nonlinear pre-processing transformations are permissible. 
The Adam optimizer (a form of gradient descent optimiza-
tion) (Kingma & Ba, 2014) was selected for this application 
because of its individual adaptive learning rates for every 
parameter, with an initial learning rate of 0.1, for 100,000 
epochs.

3.1 Equivalence of Linear Classifier Inference on 
Binned and List Mode Data

Assume that at some time t > 0 we have recorded p puls-
es. Let  be the bin associated with pulse i, for 

. Let evi be a vector of length N that is zero ex-
cept for the vi -th entry, which is one. Let our energy spec-
trum x, be defined as  which is the count of the 
pulses in each bin. Finally, let our linear model be defined 
as . Then,

   (5)

 , (6)

 ,            (7)

which means we can apply the W portion of the linear 
model to each individual pulse, rather than the whole accu-
mulated x  vector and get the same answer.

Therefore, a linear classifier trained on spectra may per-
form inference on a spectrum, or inference on list-mode 
data while keeping a running sum of the outputs, and the 
results will be the same.

4. Experiment

For this initial study, the standard detector response func-
tion for an ORTEC Detective EX-100 HPGe was used, with 
all spectra including default Albuquerque, NM natural back-
ground radiation. All spectra generated for model training 
were ideal, without Poisson noise; the impacts of varying 
the background and the counting statistics were not con-
sidered as part of this study. In general, this effect can be 
mitigated through administrative controls requiring the ob-
ject of interest count rate to exceed a minimum threshold 
value based on background count rates (3s is a commonly 
used multiplier).

To test our approach, we compared models containing 
weapons-grade material, defined for this study as 94% Pu-
239 and greater than or equal to 90% enriched U-235 
(weight percentages) to models containing reactor-grade 
material to determine if we could discriminate the different 
material types. Weapons-grade-containing models were 
discriminated from models containing reactor-grade materi-
al, highly enriched uranium (HEU) material just below the 
arbitrary threshold of weapons-grade used in this study, 
and standard radiological sources such as industrial and 
medical isotopes. Class 1 contains the 90%+ U-235 sam-
ples, class 2 contains the 94% Pu-239 samples, and class 
3 contains samples with a combination of uranium and plu-
tonium layers, where at least one shell layer is weapons 
grade. All other samples, whether sub-threshold or con-
taining only industrial and/or medical isotopes are defined 
as class 0.

Our training data consists of 41,595 samples, of which 10% 
are used for validation, and our testing set consists of 5,136 
samples. Every spectrum in the dataset is normalized so 
that the features (in this case counts in each channel bin) 
sum to 1. There are 8127 features, spanning energies from 
20keV – 3.27 MeV (the default bin structure of the Detective 
EX-100 is 8192 channels, though 65 were below the lower-
level discriminator and thus excluded from our optimization 
and training processes.

After the training and loss curves fully converged, the vali-
dation set accuracy was compared to other commonly 
available machine learning models included in MATLAB’s 
classification learner (The MathWorks, Inc., 2022).

5. Results

Primary emissions from HEU (blue) and Pu-239 (green) are 
illustrated in Figure 3, which are representative, ideal, plots 
from GADRAS of both weapons grade plutonium (WGPu) 
and HEU sources as would be measured with standard Al-
buquerque, NM USA terrestrial and cosmic background. 

Figure 3 – Example Gamma Spectra from HEU (Blue) and WGPu 
(Green)
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Where  is the Moore-Penrose pseudo-inverse of the 
weight matrix. The back-solved spectrum is then rescaled 
to match the maximum and minimum of the original spec-
trum for convenient visual comparison. The results shown 
in Figure 5 are representative of all examples visualized; the 
input spectrum or pulse train is unrecognizable from the 
backwards reconstruction.

Accuracy results on the test set are summarized in Table 3, 
with our linear classifier confusion matrix shown in Figure 6.  
We show class-weighted accuracy measures as well as 
two measures specific to our dataset. The first study-spe-
cific accuracy, red/green, measures the binary classifica-
tion accuracy of natural, industrial, medical, and sub-
threshold special nuclear material (SNM) sources of 
radiation (class 0) versus all weapons grade nuclear materi-
al as defined in this study (classes 1, 2 and 3). The second 
study-specific accuracy, Class 3f, is a 4-class classification 
which “forgives” any misclassification of class 3 material 
(containing layers of both uranium and plutonium with at 
least one of them weapons grade) as class 1 or class 2.  
The logic here is that a sample which contains WGPu nest-
ed outside of HEU may preferentially self-shield the 

The methods described in the previous section were used 
to optimize the weights and biases for this dataset, shown 
in Figure 4. Weights are plotted against energy bins for 
each class on the left, with the distribution of weights plot-
ted on the right.

Due to the large variation in magnitudes of the features and 
the inability to apply any nonlinear preprocessing tech-
niques (incompatible with list-mode data), convergence of 
the model was extremely slow; 100,000 epochs were run 
to achieve the results presented in this paper. 

An important feature of an information barrier is the con-
cept of irreversibility, wherein the sensitive input signatures 
cannot be reconstructed given information to which an in-
spector may have access. In this proposed system, that 
would include the classifier’s outputs and linear classifier 
weights. Figure 5 shows an example spectrum that was re-
constructed by multiplying the classifier’s output by the 
weights: 

      (8)

Figure 4 – Weights and Biases of Linear Classifiers

 
Figure 5 – Example Reconstructed Gamma Energ Spectrum
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From the confusion matrix (Figure 6), it is apparent that the 
largest single source of error in our linear classifier comes 
from misclassifying “other” sources (class 0) as 90%+ high-
ly enriched uranium (class 2). This is somewhat expected, 
in that HEU is a relatively low-intensity source with most 
gamma emissions in the sub-200 keV energy range; with a 
minimal amount of shielding, HEU can be very hard to de-
tect and therefore identify reliably. Further, due to the pre-
scribed structure of the Spanning Set data generation algo-
rithm, HEU enrichment was varied linearly from 20-92%, 
meaning much of the class 0 data is sub-threshold HEU 
(89% or less) with nearly identical signatures to 90-92% en-
riched HEU.

6. Conclusions and Future Work

We have shown an inherently information-limited method to 
classify radioactive sources using a linear classifier per-
forming inference on list-mode gamma ray data. A sensitive 
spectrum is never collected, and the input cannot be re-
constructed from the values that are stored. 

Our results show 83% classification accuracy in distin-
guishing weapons grade nuclear material (as defined here) 
from nuisance sources, which include special nuclear ma-
terial and thousands of combinations of medical and indus-
trial isotopes. This initial result is a promising indicator that 
our algorithm will perform well with further refinement. Par-
ticularly interesting would be a closed-loop data generation 
method to maximize generation of spectra on the decision 
boundaries, therefore generating data that maximally im-
proves the model. 

Beyond additional data generation, there are opportunities 
to add complexity to the linear model to enable a more 
complicated decision surface defining class boundaries. 
One option is to include additional output classes, possibly 
by an unsupervised clustering of existing data into similar 
groups. More sophisticated non-invertible list-mode-com-
patible architectures also hold promise, such as an autoen-
coder with list-mode encoder and nonlinear decoder, stor-
ing intermediate values between them.

From a signature verification perspective, increased perfor-
mance is expected when adding other radiation detection 
modalities such as neutron counting or multiplicity, poten-
tially in addition to further constraining the class definitions 
to include attributes such as minimum mass of weapons 
grade material or the presence of high explosives. Substi-
tuting gamma-only scintillators with lithium loaded neutron-
sensitive inorganic detectors such as Cs2LiYCl6:Ce (CLYC) 
or Cs2LiLaBr6-xClx:Ce (CLLBC) is also of interest. Parametric 
studies investigating background variation, statistical sam-
pling in list mode (accuracy vs. total counts), minimum 
mass of SNM and detector resolution are also being 
pursued.

emissions from uranium and therefore appear to contain 
only plutonium. The class 3f accuracy measure considers 
such a classification as correct instead of erroneous. These 
caveated accuracy results are relevant to a notional treaty 
verification regime in which the inspector may only care 
whether an object contains weapons grade nuclear materi-
al or not.

The Tree and k-nearest neighbors (KNN) models are com-
puted using MATLAB’s classification learner app (The 
MathWorks, Inc., 2022) and consists of all of the “quick to 
train” models available in the app. None of the MATLAB 
models are compatible with list mode data, but we have in-
cluded them for the sake of comparison to illustrate relative 
performance of our linear classifier to existing mature clas-
sifiers without the additional self-imposed limitations of this 
application. 

Accuracy: Class-weighted Red-Green Class 3f
fineTree 70.40 83.07 86.87
medTree 65.28 78.62 84.82
coarseTree 54.66 74.15 76.92
fineKNN 65.94 79.87 77.22
medKNN 67.16 81.63 82.46
coarseKNN 66.07 80.51 84.70
cosineKNN 67.14 81.82 82.15
cubicKNN 67.21 82.04 82.65
weightedKNN 68.97 82.09 83.11
linear classifier 73.03 83.13 82.85

Table 3 – Accuracy Results for Associated Classifiers

The linear classifier presented in this paper achieved the 
highest class-weighted and Red-Green accuracy scores, 
while achieving slightly above average for the class 3 forgiv-
ing score.

Figure 6 – Linear Classifier Confusion Matrix
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