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Summary

For safeguards evaluators to provide credible assurance 
that States are honoring their safeguards obligations, 
quantitative conclusions regarding non-diversion from 
States’ nuclear material flows and inventories are needed. 
The statistical analysis used to reach these conclusions 
requires that each measurement method undergo 
uncertainty quantification (UQ). Training for safeguards 
inspectors includes measurement error models that must 
account for variation within and between groups, where a 
group is defined to be a calibration or inspection period. A 
typical model for multiplicative errors for the inspector 
is  with and 

 where  is the inspector’s measured 
value of item  in group ,  is the true value of item  
from group ,  is a random error of item  from group 
,  is a short-term systematic error in group . The 

notation  means that values of  are 
assumed to have a normal distribution with mean  and 

variance . This paper describes three main inspector 
UQ-related training topics. Topic one is analysis of 
variance to estimate the relative standard deviations 

(RSDs)  and  (and the corresponding RSDs for the 
operator). Topic two is an example involving the uranium 
neutron coincidence collar (UNCL) to illustrate the need 
for inspector UQ training to include an understanding of 
the most important factors that impact the RSDs, which in 
turn also affect the rejection limits for comparing operator 
declarations to inspector measurements. For the UNCL 
method, it is important for inspectors to understand the 
fuel assembly design and IAEA neutron coincidence 
counting (INCC) software input requirements. Incorrect 
INCC declaration input is thought to be among the largest 
contributors to the observed UNCL uncertainty (as 
quantified by the RSDs). In response to needs arising from 
IAEA measurement evaluations, improved UQ methods 
have recently been developed, and the new methods 
described in topics one and two are beginning to be 
presented in training for safeguards inspectors, as will be 
described. Topic three is to use the estimated RSDs to 
evaluate material balances and to plan inspector sample 
sizes based on estimated material loss detection 
probabilities. 
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Approximate Bayesian Computation (ABC), Data Analytics,  
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1. Introduction

Inspector measurements are a cornerstone of IAEA safe-
guards, so it is important for inspectors to have a basic 
understanding of UQ. For example, suppose the opera-
tor’s declared nuclear material (NM) mass for an item is 1.1 
kg, and the inspector’s measurement is 0.95 kg.  Whether 
the 0.15 kg difference is a cause for concern depends on 
the uncertainty in the 1.1 kg and the 0.95 kg values. Effec-
tive UQ is critical in order to make quantitative safeguards 
conc lus ions  based on  i nspec to r  ve r i f i ca t i on 
measurements.

 This paper describes three UQ topics presented in train-
ing courses for safeguards inspectors. For background, 
the Guide to the Expression of Uncertainty in Measure-
ment (GUM) provides guidance on the expression of 
measurement uncertainty [1]. UQ can be approached by 
comparing multiple measurements of the same item (top-
down) or by assessing each step in the measurement pro-
cedure (bottom-up). The GUM briefly addresses top-down 
methods, but is most known for a bottom-up option using 
the measurement equation

 (1)

where  is the estimate of the measurand, and 

 are inputs. The inputs can be measurement 
or adjustment factors, and can be regarded as having a 
joint probability distribution that can include covariances 
among the inputs. For example, some of the inputs can be 
estimated calibration parameters, others can be measured 
values, and others can be adjustment factors. The GUM 
applies uncertainty propagation to  and the 
function  in Eq. (1) to estimate the uncertainty in the as-
say, defined as the standard deviation of . Informally, 
standard deviation quantifies measurement variability, de-
fined as the square root of the variance, which is the aver-
age squared distance of the  value from the mean of the 
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 values. Safeguards metrology routinely partitions total 
variability into variability around the mean and variability 
around the true value into “random” and “systematic” com-
ponents, respectively, and the GUM [1] combines random 
and systematic into a total variability as explained in in-
spector UQ training.

For verification purposes, paired (Operator , Inspector  
 ) data are collected from inspections performed during 

site visits that occur once or a few times per year, and then 
for top-down UQ, several years of paired  data are 
analysed. An effective measurement error model must ac-
count for variation within and between groups, where a 
group is an inspection period. A typical top-down multipli-
cative error model used for the  (and similarly for ) is

   (2)

where  is the inspector’s measured value of item  in 
group ,  is the true but unknown value of item  from 

group ,  (IIDN is independently and 
identically distributed normal) is a random error of item 

from group ,  is a short-term systemat-
ic error in group  [1-10]. Short-term systematic error re-
mains constant for a short term when measurement con-
ditions or settings, i.e., parameters of calibration curves, 
normalizations, and/or subtracted background etc. are not 
altered, but vary in a random way over the long term [2]. 
Long-term systematic error is sometimes also referred to 
as bias.  In applications, the normality assumption is not 
usually critical in the error model depicted in Eq. (2); the 
important aspect of the modelling assumptions are that 
there are systematic and random components with RSDs 

 and , respectively, that both bottom-up and 

top-down UQ aim to estimate [1-10]. Often, Top-down esti-
mates   and  are larger than bottom-up estimates, 
and the gap is called “dark uncertainty” [2-8]. Note that in 
Eq. (2) the same number of measurements n per group is 
assumed for simplicity of presentation.

Figure 1 plots  simulated values of   for 
e a c h  o f   g r o u p s  w i t h  p a r a m e t e r s 

 
and . The within-group means are indicated by 
the horizontal within-group lines.

The need for quality control within UQ approaches pro-
vides motivation for excellent ongoing communication and 
collaboration among inspectors to reduce and better un-
derstand error variance components, which in turn pro-
vides partial validation that safeguards is properly imple-
mented. Periodically, bottom-up and top-down estimates 

 and  should be compared (here the subscript I is 
dropped because the discussion also applies to operator 
measurements).  It is not surprising that bottom-up UQ 
tends to lead to smaller estimates of  and  than does 
top-down, because small sources of variation are often 
neglected in bottom-up UQ. However, until the gap be-
tween top-down and bottom-up estimates is acceptably 
small, the fielded assay system is not fully understood. For 
example, Fig. 2 plots the estimated probability density of 

the bottom-up and top-down estimates  of the total  

RSD  for the Uranium Neutron Coinci-
dence Collar (UNCL) [5,11] measurement using approxi-
mate Bayesian Computation (ABC) [12-16]. The UNCL is 
the bottom-up UQ example in Section 3 that uses thermal 
neutrons to measure the 235U content in fresh fuel assem-
blies. These measurements exhibit a gap between the 

bottom-up and top-down estimates of  [5,11]. The verti-
cal lines are the best point estimates, lying in the middle of 
the distribution, and the width of the distribution 

Figure 1: Ten simulated values of    for each of g=5 groups.
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characterizes how well  is estimated. Figure 2 indicates 
that the bottom-up estimate of  is optimistically low 
compared to the top-down estimate because the two dis-
tributions have very little overlap (Section 3). Data sets hav-
ing repeated measurements of the same item use top-
down UQ to separately estimate variance arising from pure 
random effects from variance arising from item-specific ef-
fects (Section 2).

Inspectors need to understand both bottom-up and top-
down UQ. Bottom-up UQ provides guidance regarding 
best measurement practice and protocol to understand 
and possibly reduce measurement uncertainty. This paper 
describes three main inspector UQ-related training topics. 
Topic one in Section 2 is analysis of variance to provide 
top-down estimate of the relative standard deviations 
(RSDs)  and  and (and the corresponding RSDs for 
the operator). Topic two in Section 3 is a bottom-up UQ 
example involving the UNCL to illustrate the need for in-
spector UQ training to include an understanding of the 
most important factors that impact the RSDs, which in 
turn also affect the rejection limits for comparing operator 
declarations to inspector measurements (Section 4.2). For 
the UNCL method, it is important for inspectors to under-
stand the fuel assembly design and INCC (neutron coinci-
dence counting software) input requirements. Incorrect 
INCC declaration input is thought to be among the largest 
contributors to the observed UNCL uncertainty (as quanti-
fied by the RSDs). Topic three in Section 4 is to use the es-
timated RSDs  and  for both the operator and inspec-
tor to evaluate material balances (MB) and to plan 
inspector sample sizes based on estimated material loss 
detection probabilities. Partitioning into random and sys-
tematic components has important implications for sample 
planning and MB evaluation. 

2. Uncertainty Quantification (UQ) – an 
empirical (top-down) approach (ANOVA)

To be conservative (with regard to reducing false alarms), 
the IAEA’s data evaluation group (nuclear fuel cycle infor-
mation analysis) uses top-down-based UQ (rather than 
bottom-up UQ) to estimate the inspector’s random and 
short-term systematic uncertainty components (RSDs) [2]. 
As explained in Section 4, the estimated RSDs are used in 
calculations to achieve target detection probabilities (DP) 
[17,18], and to perform error variance propagation in order 
to estimate the standard deviation of each material bal-
ance (MB) [1-12,19,20]. The published international target 
values (ITVs) for  and  are updated approximately eve-
ry 10 years and the next updates are scheduled to be is-
sued in early 2022 [2].

The basis of the top-down approach to UQ is an analysis 
of variance (ANOVA) with random effects based on opera-
tor-inspector relative differences. Such paired data arise 
when the operator and the inspector measure the same 
object once without measurement repetition. One goal is 
to estimate  and  for the 
relative differences. Another goal is to partition the total 
variance into four components,  and .

Figure 1 illustrated an example in which paired operator 
 measurements (typically using Destructive Assay (DA)) 

and inspector (I) measurements (typically using Non-De-
structive Assay (NDA)) from five previous inspection peri-
ods are used to estimate   and  for both the operator 
and inspector, and then to set alarm thresholds to detect 
possible data falsification in period six. The within-period 
variance is regarded as the random error variance, which 
includes the effects of item-specific bias. The between-pe-
riod variance includes both random error variance (divided 

Figure 2: Uranium Neutron Collar example with a gap between top-down and bottom-up RSD estimates.
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by the number of measurements per period) [1-12] and 
short-term systematic effects such as instrument recali-
bration. Therefore, in Eq. (2), the errors  and  in-
clude “item-specific” bias because in verification data used 
for metrology, the measured items are not true replicates, 
that is, the relevant physical properties of the item being 
measured may vary randomly among items. 

2.1 Estimating the variances of the relative 
differences D 

For a balanced dataset with n paired differences in each of 
g groups  and under the assumption that no data 
are falsified by the operator, Eq. (2) yields for the relative 
differences 

 
=

−
≈

−

( )
= +  , 

              
(3)

where  and  and  de-
notes the expected value of . Therefore, for the  
sets of  groups values of  as in Figure 

1, standard ANOVA [21] can be applied to estimate  and 

 . The validity of the approximation in Eq. (3) is shown in 
[10].

From standard ANOVA, it is well known that unbiased esti-

mators of   and  are given by

  
(4)

  

                               

where  is the overall unweighted 

average and  is the average measure-
ment for item . These formulas assume the same sample 
size (number of measurements is n) per group for simplici-
ty of presentation here. Because the actual sample sizes 

 often vary across groups, weighted averages are actu-
ally used [21-24]. 

In standard one-way random effects ANOVA [10], if the rel-
ative error variances are not constant (which would mean 

that that the assumptions  and/or 

 regarding the error variances in Eq. (2) 
a re  not  cor rect),  then i t  can be shown that 

 is an unbiased esti-

mate of the average relative variance  and 
 is an unbiased es-

timate of the average relative variance  [21,22]. 
Note from Eq. (4) that it is possible that the estimate 

, in which case  is set to 0 (in a non-Bayesian 
framework, as presented here).

This same standard random-effects ANOVA just explained 
can also be applied to data sets for which there are re-
peated measurements on the same item in another com-
mon top-down approach to UQ [9]. In this case, the 
groups are not inspection periods, but are items, and the 
between-group variance is the variance of item-specific bi-
ases [9].

Typically, it is assumed that short-term systematic errors 
change across inspection periods from the groups used in 
the ANOVA. However, it may appear that the short-term 
systematic errors change at other times and thus the 
groups are unknown. The impact of unknown groups on 
the estimates of the variances of random and systematic 
errors in ANOVA is discussed in [24].

2.2 Grubbs estimator for paired (operator, inspector) 
data to estimate  and 

One-way ANOVA based on paired data allows us to esti-
mate the measurement error variances of operators and 
inspectors. ANOVA requires the data to fall in groups, so 
that within-group and between-groups variances can be 
defined and estimated. In this example, the groups are the 
inspection periods. The basis of a Grubbs-based estima-
tor [3-6,23,24] as applied to data assumed to be generat-

ed according to Eq. (2) in order to estimate  and  
(   can be estimated accordingly) is that the covari-
ance between operator and inspector measurements 
equals , so can be estimated using (with  used to esti-
mate the average true value )

   (5)

Note that the variance of the true values is estimated using 
the covariance between the operator and inspector meas-
urements, and this provides a “teaching moment” in that 
the assumed error model in Eq. (2) implies zero covariance 
between operator and inspector measurements unless 
there is variability in the true values. 

The measurement error model   
in Eq. (2) is the random variable  multiplied by the com-

posite random variable . Therefore, a 
class exercise is to show that the variance of  condition-
al on the value of  is given by the random variable 

,  w h i c h  h a s  a n  
ex p e c te d  va l u e  ove r  i n s p e c t i on  p e r i ods  o f   
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. Therefore, the expected 
between-group and within-group sums of squares involve 

both  and . Provided that , , and  are each 
less than approximately 0.15 (typically true for most  
safeguards measurements),  the approx imat ion 

 is ade-
quate and will be used here. Then, the sample covariance 
between operator and inspector measurements can be 
subtracted from the sample variance of the inspector 
measurements to estimate  (and similarly for estimating 

. That is, within a single inspection period (group j), a 
reasonable estimate of  is 

  

The final estimate of the inspector’s random error relative 
variance is then the average over groups,

      (6)

T h e  v a r i a n c e   o f   i s  g i v e n  b y 
, 

so the variance of the between group means (equal sam-
p le  s i ze  w i th  n  obse r va t i ons  pe r  g roup)  i s 

, which yields by 
Eqs. (5) and (6)

   (7)

There is no guarantee that  or  are non-negative, 
but the corresponding true quantities are non-negative 

, so constrained versions of 
the Grubbs’ and ANOVA-based estimators are available; 
see [12-16] for Bayesian-type constraints and [23-24] for 
non-Bayesian constraints.

The original Grubbs’ estimate [25] is for additive error mod-
els. The ABC framework [12-16] makes Grubbs’ type esti-
mation straightforward (constrained according to the prior 
distribution for each parameter) for either additive or multi-
plicative models. Using Eqs. (5), (6) and (7), the five sum-
mary statistics used in this application of ABC for n (O,I) 
pairs in each of g groups are . 

As an example, Figure 3 plots the ABC-based posterior 
probability density function (pdf) for  using the ABC 
threshold  0.001,0.02,0.1. The ABC-based [12-16] esti-
mate of the pdf for  is computed as follows. First, ABC 
simulates synthetic data from Eq. (2) using many (105 in 

this example) candidate RSD values from a wide prior pdf, 
Second, ABC accepts all those candidate RSD values into 
the posterior pdf for which the corresponding five summa-
ry statistics above are close (within some small tolerance 
denoted ) to those in the test data computed in this case 
as simulated data from Eq. (2). Regarding whether ABC is 
well calibrated, for  0.005,0.01 or 0.1, the predicted root 
mean squared error (RMSE) is 0.027 and the observed av-
erage standard deviation is 0.028, and the actual posterior 
probability coverages are 0.99, 0.96, and 0.91. The nomi-
nal interval coverages are 0.99, 0.95, and 0.90, so ABC is 
well calibrated. However, using  0.001 leads in this ex-
ample to a few unreasonably large accepted trial values of 

, which shifts the mean upward from the true value of 
0.027. Fortunately, the calibration check comparing nomi-
nal to actual coverages detects that  0.001 leads to 
poor calibration, and so it is to be avoided.  References 
[5,12,14-16] describe calibration checks for ABC in safe-
guards measurement applications, anticipating that the 
user will experiment to find an effective value of  such that 
ABC is well calibrated. All analyses presented here are 
done in R [24].

Inspector training currently presents the original Grubbs’ 
estimate [23] above in Eqs. (5)-(7) in a non-Bayesian frame-
work. This paper emphasizes the need for all Safeguards 
professionals, including inspectors, to have a basic under-
standing of bottom-up and top-down UQ. The fact that 
dark uncertainty typically exists is most easily illustrated 
using a plot such as Fig. 2, where uncertainty in the bot-
tom-up and top-down RSD estimates is also provided so 
that apparent gaps can be assessed for statistical signifi-
cance. This section used simulated data from Eq. (2) to il-
lustrate ABC as an effective option to provide a pdf for the 
top-down estimate of . A Bayesian framework 
[3,4,54,7,8,12] naturally provides the uncertainty in the RSD 
estimates and is beginning to be presented as an option in 
training courses. Note that the non-negativity constraint on 
true RSDs forces truncation of negative estimates whether 
a Bayesian or non-Bayesian approach is used. Note also 
that while top-down UQ might lead to more realistic RSD 
estimates, there can be large uncertainty (wide posterior 
pdf) in top-down RSD estimates. Also, bottom-up RSD es-
timates are continually being improved, which leads to bet-
ter understanding of the measurement process. It should 
be emphasized that the IAEA has unique opportunities to 
assess the quality of top-down and bottom-up UQ be-
cause inspector measurements are typically made using 
NDA while operator measurements are typically made us-
ing DA. As a consequence, dark uncertainty such as item-
specific bias that is different for NDA than for DA of the 
same item is exposed when comparing operator declara-
tions to inspector verification measurements of the same 
items.  Therefore, topics one and two describe recent im-
provements to UQ methods, and the new methods are be-
ginning to be presented in inspector training, which is 
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helping to overcome communication challenges involving 
the expression and quantification of uncertainty.

One of the main data sources used to estimate the IAEA’s 
ITVs, is paired operator-inspector data such as that in Fig. 
1 and analysed here without repeated measurements of 
items [2-5,21]. Recall that item-specific bias is often evi-
dent from applying Grubbs’ estimation to paired data such 
as that used to generate the  values in Fig. 
1. The evidence for item-specific bias is that the estimated 

 is larger than predicted from bottom-up UQ (on the ba-
sis of non-overlapping pdfs such as in Fig. 2, but for ). 
As a result of such evidence, bottom-up UQ has only re-
cently begun to consider sources of item-specific bias, 
such as departures from calibration items [2-5] or model-
ling assumptions [5,11,12]. Item-specific bias is random 
across items, so the effective random error RSD is 

The reported ITV values include item-specific bias effects 
if they are based on such paired data, and so   is actually  

.

3. A bottom-up UQ example: Uranium Neutron 
Coincidence Collar (UNCL)

The UNCL uses an active neutron source to induce fission 
in 235U in fresh fuel assemblies [3,5,8]. Neutrons from fis-
sion are emitted in short bursts of time, and so exhibit 
non-Poisson bursts in detected count rates. Neutron coin-
cidence counting is used to measure the “doubles” neu-
tron coincidence rate Y, which can be used to estimate the 
linear density of 235U in a fuel assembly (grams 235U per 
cm) using calibration parameters  and . The rate  is 

the observed rate of observing two neutrons in very short 
time gates, each of approximately 10-6 sec, and is attrib-
utable to fission events. The equation commonly used to 
convert the measured doubles rate  to an estimate of 
(grams 235U per cm) is

   
(8)

where  and  are to be estimated, and  
is a product of correction factors that adjust Y to item-, de-
tector-, and source-specific conditions in the calibration 
[5,11]. Therefore, Eq. (8) is a special case of GUM’s Eq. (1), 
but with  and  reversed here compared to that used by 
the GUM in Eq. (1) because conventionally in calibration,  
is the measurand and  is the measurement data, such as 
the neutron count rate. In Eq. (8), the net doubles rate , 
the two calibration parameters a_1 and a_2, and the cor-
rection factors in    are among the  ’s in 
Eq. (1).

Reference [8] showed that calibration is most effective 
(leading to smallest RMSE in the estimate of , denoted ) 
if there is no adjustment for errors in the predictor , and 
that errors  should be included in synthetic 
calibration data. Note that by working with 1⁄  and 1⁄ , 
one can convert Eq. (8) to one that is linear in the trans-
formed predictor 1⁄ .

Several recent UNCL measurements have exhibited a gap 
between the bottom-up and top-down total RSD estimate, 

 [3,5,8]. Recall that Figure 2 is an example 
of the estimated pdf for  using approximate Bayesian 
computation (ABC, see Section 2) for both the top-down 

Figure 3: The posterior pdf for Grubbs’-type estimation of . The posterior mean is 0.023 and the true value of   is 0.027 as was used 
to simulate the data in Fig. 1.
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and bottom-up RSD estimates [3-5,7]. The bottom-up esti-
mate shown in Fig. 2 was presented in [3,8] using ABC ap-
plied to simulated data from Eq. (8), where  is the 235U 
content, and the item-specif ic adjustment factor 

 is a product of correction factors that 
adjust the measured neutron doubles rate   to item-, de-
tector-, and source-specific conditions in the calibration. 
The correction factors are currently being examined more 
closely using modelling [3,5,8,11] and [5] indicates the need 
for better inspector training on measurement protocol, in-
cluding the importance for inspectors to understand the 
fuel assembly design and the INCC software input be-
cause these requirements impact some of the factors in 

. Incorrect INCC declaration input is 
thought to [5] be among the largest contributors to the ob-
served UNCL uncertainty (as quantified by the RSDs), and 
consistent source positioning is also a non-negligible con-
tributor to item-specific ef fects on 
[3,5,8,11].

Another potential contributor to the observed UNCL uncer-
tainty (and more generally the uncertainty on any NDA 
measurement) is the purely random uncertainty associated 
with the measurement. A large factor that drives random 
error variance is measurement time. Given that the inspec-
tor determines UNCL measurement duration, an important 
aspect in training inspectors on UQ is to promote an un-
derstanding of how uncertainty quoted by INCC software 
(or any analysis software used for NDA techniques) relates 
to the total RSD  that is calculated based on a top-down 
analysis using operator-inspector paired data. In the case 
of the UNCL, the uncertainties quoted by INCC are based 
on a bottom-up approach that takes into account estimat-
ed uncertainties in the calibration constants, uncertainties 
that are known for the various correction factors, as well as 
the random uncertainties associated with the doubles co-
incidence counting rate. To ensure that the quality of the 
current measurement is consistent with the historical 
that was determined for this particular set of UNCL meas-
urements, the inspector is encouraged to compare the 
quoted uncertainty from the INCC code to the top-down 
historical  for this measurement. If the bottom-up uncer-
tainty estimation produced by the analysis software is sim-
ilar in size to, or smaller than, the historical RSD, the quality 
of the current measurement is presumed to be consistent 
with the historical data used in modelling the top-down 
historical RSD for this measurement technique. On the 
other hand, if the bottom-up uncertainty estimation is sig-
nificantly larger than the top-down historical RSD, it is pre-
sumed that the random uncertainty of the current meas-
urement is unacceptably high which requires an increase 
in the measurement time to reduce the bottom-up uncer-
tainty estimation. Training inspectors how to perform a 
quality control check on each measurement using such a 

simple guideline helps reduce the chances that the histori-
cal  will become large over time due to the inclusion of 
poor-quality data.            

4. Two main applications for RSD estimates of 
 and 

Within safeguards, there are two main applications for the 
estimated values of  and . The first applica-
tion is material balance evaluation where  and 

 are used in variance propagation to estimate the 
standard deviation of the material balance. The second 
application is designing inspection plans to have a desired 
detection probability.

4.1 Material balance evaluation 

The MB sequence is fundamental to material accounting 
[19,20]. For example, in a sequence of 12 monthly MBs 
over a one-year analysis period, a key task is to classify 
the period as having no loss or having non-zero loss. Nu-
clear material accountancy (NMA) at a facility that pro-
cesses nuclear material requires measuring facility input 
transfers , output transfers , and inventory I to 
compute a material balance defined for balance period  
as ,  which equa ls 
“book inventory” minus “physical inventory,” where 

 is the book inventory. 

Typically, many measurements are combined to estimate 
the terms , ,  and  in the MB; therefore, 
the central limit effect and years of experience suggests 
that MBs will be approximately normally distributed with 
mean equal to the true NM loss  and standard deviation

, which is expressed as , where  de-
notes the MB [19,20]. Therefore, a sequence of n MBs are 
assumed to have approximately a multivariate normal dis-
tribution, , where the n×n 
covariance matrix is

, 

with variances on the diagonal and covariances on the 
off-diagonals. 

One common goal is for the loss DP to be at least 0.95 if 
 SQ (significant quantity, which is 8 kg Pu or Urani-

um-233 or 25 kg of uranium-235 in HEU), which is accom-
pl ished i f   (F igure 4).  The factor 
3.61=1.96+1.65 where the alarm rule  is 
used in two-sided testing (testing for either loss or gain of 
NM) for approximately a 0.05 false alarm probability. 
Therefore, if a loss of  occurs, then the DP is only 
0.50. But if a loss of (1.96+1.65) , then the DP is 0.95  
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actual irradiation (case 2) are the same when the uncer-
tainties in the fits are taken into account, for all fuel assem-
blies except fuel 19. For fuel 19, the three RADs do not 
overlap below 15 μs, which results in a slightly different 
slope of the exponential fit and therefore also in τ. The τ 
values for case 9 appear, when compared to those in the 
default case (case 1), to be biased towards lower values 
for 18 of the 20 fuel assemblies. For ten fuel assemblies, 
the τ values for case 9 are in fact lower than for those of 
case 1, and in ten cases they are the same when the un-
certainties in the fits are taken into account. This means 
that for 50% of the fuel assemblies, changing the fuel ge-
ometry and irradiation conditions results in a τ value which 
is lower when compared to the default case, with an aver-
age difference of 1.36 μs. 

4.2.3 Relating effects in RAD and τ 

Figure 4 plots τ versus the RAD amplitudes to visualize 
their interdependence. It shows τ versus the values of the 
RAD amplitudes at 5 μs, the data point closest in time to 
when the τ fit begins (at 4 μs), for all 20 fuel assemblies. 

Comparing the RAD amplitudes for the two irradiation his-
tory cases (case 1 and case 2), shows that the largest im-
pact on the RAD amplitude is found for one specific fuel 
assembly (fuel 16) and that minor discrepancies can be 
found for a small number of fuel assemblies. It can also be 
seen that for a large fraction of the fuel assemblies, mainly 
those with a relatively high RAD amplitude, the difference 
in RAD amplitude for the default case and the realistic 

case is noticeable. It can also be seen in Figure 4 that the 
RAD amplitudes in case 9 are considerably lower than for 
case 1 (the default case).

With respect to τ, Figure 4 shows that although the RAD 
amplitude does not change much with irradiation history, τ 
is seen to vary in all directions (remain the same, decrease 
and increase). Inspecting the irradiation histories of the fuel 
assemblies for which τ increases the most (fuels 2, 15, 5) 
or decreases the most (fuels 3, 19, 16, 1), provides no 
clear explanation for how τ changes. Both groups contain 
fuel assemblies with similar values of initial enrichment, 
burnup and cooling time. With respect to irradiation history 
and irradiation conditions, there is also no clear difference 
between the fuel assemblies in the two groups. Both of 
them contain fuel assemblies with unusually long and unu-
sually short irradiation periods, low as well as high neutron 
fluxes, and fuel assemblies that have spent long periods of 
time outside the reactor before being reinserted. Only one 
of these seven fuel assemblies (fuel 19) has experienced 
an irradiation history similar to that in the default case. 
However, considering statistical uncertainties of Monte 
Carlo simulations, it is not surprising that the τ values fall 
outside the range of uncertainty from the fits in about a 
third of the cases. We have also made ten repeated simu-
lations of the same case and seen that an average of the  
τ predictions are indeed normally distributed around  
the mean.

When comparing the RADs and the τ values for the de-
fault case (case 1) and the most realistic case (case 9), it is 

Figure 4: TValues of τ versus the RAD amplitude at 5 μs for all 20 fuel assemblies. The different markers denote the different cases: 
circles=case 1, x=case 2, and triangles=case 9. The different colours correspond to different fuel assemblies and the labels show the fuel ID. 
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(Figure 4). If , this can be mitigated either 
by reducing the typical magnitude of measurement errors 
to achieve  (if feasible), and/or by closing 
the balances more frequently so there is less nuclear ma-
terial transferred per balance period, which reduces  .

In order to address large throughput facilities Near Real 
Time Accountancy (NRTA) was introduced in the mid 
1990’s. NRTA is frequent material balance closure, such 
as one per 10 to 30 days instead of only annually in con-
junction with the annual physical inventory taking at the 
time of plant shutdown. As explained in inspector UQ 
training, large throughput facilities cannot typically achieve 
DP  for a loss of  SQ over a long time period 
such as one year. And, NRTA is not a panacea, because, 
as shown in [20], if a facility slowly diverts NM over, for ex-
ample, one year, then a single yearly statistical test based 
on the annual cumulative material balance (known as CU-
MUF),   has larger DP than frequent statistical test-
ing during the year. Of course, if the facility diverts NM 
abruptly, such as over one day, then NRTA will have much 
larger DP than a single annual statistical test. It is therefore 
generally accepted that NRTA is a valuable safeguards 
measure, despite leading to slightly smaller DP than in us-
ing annual MBs for protracted loss detection. Most safe-
guards studies consider a yearly analysis period, corre-
sponding to the time of the annual scheduled physical 
inventory. But, if the facility diverts material, for example, 

 in year one and  in year two, then the DP is 
lowered compared to diverting one SQ in the analysis year. 
See Figure 5; however, the required diversion time would 
be longer than one calendar year, in this figure, lasting 
from period 7 to 18. 

Grubbs’ estimation [23] (or ABC based on Grubbs’) pro-

duces the parameter estimates , ,  and , 
which, as just explained, are needed for MB evaluation. 
Note that verifications rely on relative difference  
and  and  as given by Eq. (4) are the only parameters 
required for verification checks as described in Section 
4.2. However, because MB evaluation is conducted sepa-
rately for the operator, the estimates  and  are 
required.

The law of error propagation is described in the GUM [1] in 
the context of bottom-up UQ. The original law of error 
propagation by Gauss was designed for random errors 
only. Gauss realized after his publication that this was not 
always adequate. Therefore, the law of error propagation 
was modified to allow for measurement values to be corre-
lated. The mode of error propagation for correlated values 
is a minor extension from purely independent (random) val-
ues. Specifically, formula (E.3) of JCGM 100:2008 [1] illus-
trates error propagation applied to the measurand equa-
tion  using the approximate result 
(based on a linear Taylor series approximation)

   (9)

where  is the variance of ,  is 
the correlation coefficient of  and , and  is the 
covariance of  and . The first term on the right side of 

Figure 4: A    and a  distribution with threshold 1.96 for 2-sided testing.
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Eq. (9) is the original law of Gauss for independent errors. 
The second term allows for correlated errors. 

It is instructive in UQ training to illustrate how the MBE as-
sumptions implement propagation of variance. Suppose 
that the total material mass declared by the operator is 
simply  where  is the mass of 
item . Assuming this model, then the variance of  denot-
ed by  is given by applying Eq. (9) and accounting  
for the fact that the random and systematic error  

estimates propagate differently. Note that  for 
, and also note 

that the variance of an individual item is assumed to be the 
same for all items, that is  for all , and the correla-
tions  are also assumed constant for each . It then 
follows that Eq. (9) is an exact expression, and

 
(10)

because in nuclear safeguards the total error variance for 
measurement of one item is assumed as in Eq. (10) to be 

 and  is the vari-
ance of the short-term systematic measurement errors. 
Note that Eq. (10) is assuming negligible variation in the 
true values, so assuming ,  
the same resul t  is obta ined by us ing Eq. (2),           

which has variance . Similarly, the abso-
lute variance of  is easily shown in a course 

exercise reviewing variance propagation to be  

,  w h i c h  e q u a l s 

 for the case .

4.2 Sample size calculations for verification tests

Data such as the paired  data in Figure 1 are collect-
ed for verifying operator declarations. Recall the example 
from Section 1: suppose the operator’s declared NM mass 
for an item is 1.1 kg, and the inspector’s verification meas-
urement is 0.95 kg.  Whether the 0.15 kg difference is a 
cause for concern depends on the uncertainty (as quanti-
fied using RSDs as explained in Section 2) in the 1.1 kg 
and the 0.95 kg values. 

Section 2.2 described how Grubbs’ estimation can be ap-
plied to such   data to estimate the four RSDs 

. Section 2.1 applied standard ANOVA to 

estimate the total RSD   of 
. The IAEA has historically used zero-defect 

sampling, which means that the only acceptable (passing) 
sample is one for which no defects are found according to 
the pass/fail test  [17,18]. Because here we con-
sider the case that the operator overstates the amount of 
NM present in a defective item by a certain amount (see 
below), the pass/fail test is one-sided: An alarm is raised if 
and only if . 

The non-detection probability  is the probability that no 
defects are found in a sample of size  when  (  is one or 
more) true defective items are in the population of size . 
For one-item-at-a-time testing and under the assumption 
that only one measurement method is applied (extensions 
to more than one method see [18]), the non-detection 
probability  is given by

Figure 5: TMB sequences over 36 months using fixed-period (annual) decision periods.
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 (11) 

           

where the selection probability term  is the probability 
 that the selected sample contains  truly de-

fective items, which is given by the hypergeometric distri-
bution, i.e.,

  

The non-identification probability, , is the probability that 
none of the  truly defective items is inferred to be defective 
based on the individual tests whether . The value 
of  depends on the metrology, the defect size (defined as 
the amount by which the declared item nuclear material 
mass differs from its best accountancy value), and the 
alarm threshold (which is typically ). Assuming a purely 
random error model, i.e., a multiplicative error model as in 
Eq. (2) for the inspector measurement (and similarly for the 
operator) with no systematic errors, and the case that the 
operator overstates the material present by the amount 

 in each defective item, the non-identification 
probability [17,18] is

  

where  is the total RSD (random plus systematic) for the 
one measurement method,  is the diverted amount of 
NM (usually  is the significant quantity),  is the average 
amount of NM per item, and  is the cumulative normal 
distribution function.

Using Eq. (11), the non-detection probability  is given by

 

 

(12)

For simplicity, sample size calculations currently regard all 

errors as random, but the total RSD  in-
cludes the effects of both systematic and random errors 

[17,18]. From Section 2, it is evident that  must be esti-
mated using , which has estimation error; therefore be-
cause the DP is estimated by substituting  in Eq. (12) for 

, the calculated DP also has estimation error and confi-
dence bands can be constructed around plots of DP ver-
sus sample size or plots of DP versus the number of de-
fective items for a chosen sample size .  Also, reference 
[10] uses concepts from tolerance interval construction to 
show how to control the false alarm rate in future meas-
urements when  and  are estimated from a few previ-
ous inspection periods as in Figure 1. 

It is to be emphasized that Eq. (11) is quite general; it al-
lows for the non-identification probability  to be a user-
defined probability density function, such as the familiar 
normal density, or any other specified density that is sug-
gested by measurement evaluations. Most commonly, 
as given above is assumed. Also, the requested sample 
size  is then based on the minimum detection probability 
(maximum non-detection probability) over a range of pos-
sible  values (  is the true number of defective items in the 
population of size ), assuming each defective item has 
the same defect size.

5. Summary

IAEA safeguards training courses serve many types of stu-
dents, including inspectors, who need to understand bot-
tom-up and top-down UQ. Bottom-up UQ is primarily pre-
sented in NDA training. Top-down UQ is presented by the 
statistical analysis team and includes Grubbs’ estimation 
as described in Section 3. Grubbs’ estimation training in-
cludes related topics such as screening for outliers, 
choosing the appropriate groups if by inspection period is 
not the appropriate grouping [24], alternatives to Grubbs’ 
estimation to reduce variability in RSD estimates, and sub-
sampling to make more homogeneous strata if item mass-
es have large variability (which increases the variability in 
the Grubbs’ estimates). Section 4 briefly described two 
main applications for the estimates of the four main RSDs, 

. 

As UQ utilizes a holistic means to assess and estimate to-
tal uncertainty, performing a proper UQ can be challenging 
and tedious. Effective bottom-up and top-down UQ help 
to further reveal the so called “dark uncertainty” which ex-
ists in-between. Without this complete assessment, all 
sources of uncertainty cannot be properly identified and 
accounted for. The aim for effective UQ is part of ongoing 
quality control for measurements, and collaborations re-
garding any gaps between bottom-up and top-down RSD 
estimates (with attention to uncertainty in the RSD esti-
mates – see Fig. 2) which can lead to fruitful communica-
tion among nuclear safeguards professionals.
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