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Abstract:

In the last years, a  database of simulated spent fuel 
observables was developed at SCK•CEN by combining 
the results of depletion-evolution codes and the responses 
of several detectors obtained by Monte Carlo models. We 
analysed the large amount of generated data with Artificial 
Neural Networks, by using the MATLAB toolbox.

In this paper we focus on the application of Artificial Neural 
Networks to simulated Self-Interrogation Neutron 
Resonance Densitometry observables with the aim to 
quantify the 239Pu content in spent fuel. In view of a realistic 
application of the method, the number of data in the 
training and validation sets was limited to 20 spent fuel 
assemblies; the obtained performance when using 
randomly selected spent fuel assembly was compared 
with the one obtained when the spent fuel assemblies 
were selected by expert judgement. The average deviation 
between the nominal 239Pu content and the calculated 
239Pu content in the testing data set was 0.2% with 
a standard deviation of 3.5% and a maximum deviation of 
10%.

It was found that the selection of spent fuel assemblies 
based on expert judgement results in better performances 
and therefore speeds up the data analysis when compared 
to a pure random selection of the data; hence the term 
natural, as opposite to artificial, is present in the title of the 
paper.

Keywords: Spent Fuel; Non Destructive Analysis observa-
bles; Artificial neural networks; Self-Interrogation Neutron 
Resonance Densitometry; Large Data sets

1. Introduction

Non-destructive assay (NDA) of spent fuel assemblies 
(SFA), either for safeguards verification purposes or for 
safety aspects related to nuclear fuel cycle, relies often on 
the detection of neutron and gamma radiation spontane-
ously emitted by the spent fuel [1]. Gamma radiation is 
mainly emitted by fission products and therefore its meas-
urement does not represent a direct assay of the quantity 
of fissile material present in the SFA. Neutron radiation is 
originating mainly from spontaneous fission decay and 
α-decay via (α,n) reactions on oxygen isotopes. The decay 

of actinides such as Cm isotopes represents the main 
source of such neutron radiation which can then undergo 
subsequent multiplication in the fissile material of the fuel. 
Therefore, also the observables associated to neutron 
measurements on SFA do not represent a direct assay of 
the quantity of fissile material present in the SFA, unless 
one is able to determine the multiplication and relate that 
to the residual fissile mass [2].

In this framework, and in relation to increased verification 
needs associated to the imminent start of operation of ge-
ological repositories [3,4], R&D on NDA intensified in the 
last decade [5,6,7,8,9]. One of the techniques that was 
studied is the Self-Interrogation Neutron Resonance Den-
sitometry (SINRD) [10,11]. The observables associated to 
this technique are directly related to the quantity of 239Pu in 
the fuel and therefore have the potential to provide means 
for a direct quantification of the 239Pu amount in a SFA.

The use of the SINRD technique and the data analysis of 
the associated observables by means of artificial neural 
network (ANN) [12,13] is described in the paper.

2. Self-Interrogation Neutron Resonance
Densitometry observables

The SINRD technique [10] is a NDA technique for the direct 
quantification of 239Pu. The total neutron cross-section of 
239Pu shows a strong resonance around 0.3 eV and the at-
tenuation of the neutron flux around the 0.3 eV energy re-
gion is used to directly quantify the 239Pu mass. The pas-
sive neutron emission from spent fuel is measured with 
fission chambers bare or wrapped with different absorbers 
as follows:

• Cd wrapped 235U fission chamber, insensitive to thermal
neutrons

• Bare 235U fission chamber, mainly sensitive to thermal
neutrons

• Bare 238U fission chamber, mainly sensitive to fast
neutrons

• 239Pu fission chamber covered by Gd foil, sensitive to
neutrons with energy > 0.1 eV

• 239Pu fission chamber covered by Cd foil, sensitive to
neutrons with energy > 1 eV
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The observables of interest are two; the first one is the 
SINRD signature RSI, defined as the ratio between the neu-
tron count by the 238U fission chamber (CFAST) and the 
count differences in the Gd and Cd wrapped 239Pu loaded 
fission chamber (CGd-CCd); the second one is the ratio be-
tween CFAST and the count differences in the bare and the 
Cd wrapped a 235U fission chambers (CTH).

As explained in [14] the estimated uncertainty due to 
counting statistics for a measurement time of 1 h is strong-
ly dependent on the burnup of the spent fuel assembly. 
This estimated uncertainty is lower than 5% for fuel with 
3.5% initial enrichment, 5 years of cooling time, and burn-
up larger than 15 GWd/tHM [14]. The use of 239Pu fission 
chambers enhances the sensitivity of the technique to 
239Pu content [11].

The two observables were estimated by means of Monte 
Carlo simulations with the code MCNPX 2.7.0 [15], the ra-
dionuclide composition of the fuel was taken from the 
spent fuel library developed at SCK•CEN [16,17,18]. Two 
observables, RSI and CFAST/CTH, were determined for a total 
of 2940 cases of the spent fuel library [19].

The obtained results [7] for 17x17 PWR SFA indicated that 
SINRD can only be applied in dry conditions and that cali-
bration curves can be determined to quantify 239Pu provid-
ed that initial enrichment (IE) is known.

Figure 1 shows the RSI observable as a function of 239Pu 
content for different values of IE and BU. If the burnup (BU) 
is above 30 GWd/tHM the data cluster around an almost 
straight line and there is a strong correlation between RSI 
and 239Pu content irrespective if the IE. For burnup below 
30 GWd/tHM the data exhibit a more scattered behaviour. 
This is due the fact that at lower BU values the presence of 
235U interferes due to the presence of a weak resonance at 
about the same energy as the one of 239Pu.

The ratio CFAST/CTH, shown in Fig. 2, can be used to deter-
mine the IE if the BU is less than 30 GWd/tHM and to ac-
count for the interference from 235U. The ratio RSI is almost 
independent from the cooling time (CT) up to CT of 300 
years, while the ratio CFAST/CTH starts to decrease from not 
less than 10 years (Fig. 3).

Figure 1: RSI as function of 239Pu amount for any BU values and 
for BU values of at least 30 GWd/tHM. CT was 5 years and IE 
between 2% and 5%.

Figure 2: CFAST/CTH as a function of IE for any BU values and a CT 
of 5 years. The results for BU values of less than 30 GWd/tHM are 
highlighted in a different colour.
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Figure 3: RSI and CFAST/CTH as a function of CT. The data are for an IE of 2% and BU of 30 GWd/tHM.

Figure 4: Architecture of the Neural network considered in this work.

3. Data analysis with artificial neural networks

3.1 Artificial Neural Networks

In addition to the above mentioned approach, we decided 
to investigate the use of artificial neural networks [12] as 
mean to determine the 239Pu quantity given the two ob-
servables RSI and CFAST/CTH.

An ANN can be described as a network in which each 
node (or neuron) i processes the n input units it is connect-
ed to through a transfer (or activation) function fi :
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where yi is the output of neuron i, xj is the j-th input to node 
i, wij is the weight of the connection between input j and 
node i, and qi is the threshold (or bias) of the node. While 
each neuron i can have its own transfer function in our im-
plementation [13, 20] the same transfer function was used 
for all the neurons in a given layer.

Neural networks have a multilayer architecture consisting 
of one layer for input neurons, one or more inner layers of 
neurons (also called hidden layers), and one layer for out-
put neurons. The architecture chosen in this work is repre-
sented in Fig. 4 and consists up to three hidden layers. 
The number of nodes in the input layer is indicated with I, 
the number of nodes in the hidden layer number k is indi-
cated with Hk, and the number of nodes in the output layer 
is indicated with O.
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In this architecture, the input variables (Observables) are 
linearly scaled between -1 and +1 before being fed to the 
ANN. Sigmoid functions are used to connect the neurons 
in the input layer to the neurons in the first hidden layer, as 
well as to connect the neurons in the different hidden lay-
ers. Linear functions are used to connect the neurons in 
the last hidden layer to the neurons in the output layer. Fi-
nally the output from the neurons of the output layer is 
transformed into the output variable (239Pu mass) with the 
inverse of the linear scaling function used for the consid-
ered observables.

The database of simulated observables and spent fuel 
characteristics is divided in three sets, corresponding to 
training, validation and testing. The training process of 
a neural network is an iterative process where the weights 
and biases of each neuron are adapted as result of the 
predictive error. Using an initial set of weights and biases, 
the training set is used by the training algorithm to calcu-
late the predictive error and to adapt the weights and bias-
es of the neurons. The predictive error is also computed 
for the validation set for each iteration during the training 
process. The predictive error for the training set and vali-
dation set normally decreases with the number of itera-
tions but, as the network begins to overfit the dataset, the 
error in the validation set tends to increase. The weights 
and biases of the neurons in the trained network are those 
obtained for the minimum value of the predictive error in 
the validation set. The testing set is finally used to deter-
mine the accuracy of the trained ANN and to evaluate its 
capability to predict results from data it was not trained 
with. [21] 

3.2 Data analysis of SINRD signatures

We considered only SINRD observables for cases with CT 
of 5 years, given the weak dependence on the CT up to 
a CT value of 10 years. The dataset is therefore reduced to 
98 entries associated to 14 values of BU and 7 IE.

The size of the data set is relatively small when compared 
to the large data sets that are usually used when training 
an ANN; however, this is in line with the fact that, in view of 
a deployment of the ANN with experimental data, the data 
set would also not be large when considering realistic 
combinations of IE and BU values.

Starting from Eq. (1) we estimated the number of parame-
ters of the ANN that need to be estimated during the train-
ing procedure as a function of the network structure. The 
results are shown in Table 1 and indicate the number N of 
parameters as a function of the number of nodes I in the 
input layer, the number of nodes Hk in the hidden layer 
number k, and the number of nodes O in the output layer. 
Different configurations with k between one and three 
were considered with a minimum level of complexity, in 
view of the limited availability of training data.

In this work we use an architecture where the two observ-
ables enter the input layer, and the 239Pu amount is the 
only quantity in the output layer. Therefore for our case I=2, 
representing the two SINRD observables, and O=1, repre-
senting the 239Pu amount.

In practice, the data processing with ANN consists in iden-
tifying a ANN configuration that describes the dependence 
of 239Pu varies in the space of the variable CFAST/CTH and 
RSI.

I H1 H2 H3 O N

2 3 1 13

2 2 2 1 15

2 2 2 2 1 21

Table 1: Number n of the ANN parameters to be determined as 
a function of the network architecture.

For a given ANN configuration, there is a level of arbitrarity 
when choosing the size of training, testing and validation. 
In our case, given the limited size of the whole database 
and the limited possibilities to carry out actual measure-
ment we decided to limit the size of the training and valida-
tion set to 10 entries each; the rest of the database was 
used for testing.

Since the number N of the network parameters should not 
exceed the size of the training and validation data set we 
opted for a network with two hidden layers with two nodes 
each. The choice of two layers stems from previous expe-
rience where we learned that better performance can be 
achieved when the number of layers is increased [13, 20].

The analysis of the data was carried with a tool [20] devel-
oped in MATLAB [22]; the tool allows to carry out the anal-
ysis through a graphical user interface (GUI); through this 
GUI the user can import data from a text file, filter the data 
based on certain criteria, define the network architecture 
and several optimization options such as internal process-
ing functions, performance function and training function 
[20]. The results and network configuration can be export-
ed. The tool allows training with random or fixed initial val-
ues for weights and offset. Also the entries of the database 
to be used for training, validation can be chosen randomly 
by the programme or by the user via flags associated to 
entries in the database.

In our analysis, the optimization of the ANN through the 
quantity mean square error (mse)
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N
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N
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Where Ak,calc is the value of the parameter as determined 
by the ANN in the output layer, Ak is the nominal value of 
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the parameter. After each iteration (also called epoch) the 
weights and biases of the nodes were updated according 
to the Levenberg-Marquardt [23,24,25] or Bayesian regu-
larization [26,27] algorithms as implemented in Matlab with 
the trainlm and trainbr functions, respectively. The value of 
the parameters used in the both algorithms are included in 
Table 2.

Maximum number of epochs 105

Maximum time to train (in seconds) 1000

Network performance goal 0

Minimum performance gradient 10-7

Maximum value for the Marquardt adjustment 
parameter (mu)

1010

Table 2: Parameters used for the training algorithms.

In our analysis we tested the option not to include the scal-
ing function described in Fig. 4 between observables and 
input layer and between output layer and output variables. 
This test resulted in worse values of the mse when com-
pared with an analysis that include this scaling step.

3.3 Results

Initially we kept random initial values for weights and offset 
as well as the entries of the database to be used for train-
ing, testing and validation. We observed a large variation in 
the number of epochs before the training timing ended as 
well as a variation of several orders of magnitude in terms 
of mse.

We realized that it is impossible to identify the configura-
tion with the minimum mse based on a random or sequen-
tial selection of the database entries. Assuming that the 
assignment of an entry to the validation or training data set 
does not matter, with 20 entries in 98 this would corre-
spond to

n
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combinations.

With the used data analysis tool, both the initial values for 
weights and offset as well as the entries for training and 
testing can be defined by the user or chosen randomly.

Since weights and offset define the ANN to be trained, the 
choice of the initial values of weights and offset was kept 
random.

We then tried to identify, by expert judgement and hence 
natural intelligence, the entries of the database. The choice 
of the entries was carried out by studying how the 239Pu 
varies in the space of the variable CFAST/CTH and RSI. This is 
shown in Fig. 5.

Figure 5: 239Pu amount as a function of RSI and CFAST/CTH.  
The number indicate the corresponding entry in the considered 

data set.

The data in Fig. 5 reveal that CFAST/CTH and RSI have a limited 
range of variation and lie in specific domain. As explained 
before, we are looking for a ANN configuration that de-
scribes the dependence of 239Pu in the space of the varia-
bles CFAST/CTH and RSI. Given the results in Fig. 5, it was logi-
cal to assume that entries to use in the training and 
validation data set should lie at the boundary of the domain 
of CFAST/CTH and SINRD. In addition, it seemed logical that 
a sufficient number of them should lie inside the area in or-
der to allow to describe the shape over the domain of CFAST/
CTH and RSI.

Based on these criteria, we defined the entries for the train-
ing validation data set as indicated in the Table 3 and Fig. 6. 
It is worth to comment that the entries indicated in italic, al-
though present in the spent fuel library, are not realistic 
since the BU is too high for the chosen IE. These entries 
were nevertheless considered to assess the performance of 
the method in a configuration where all the entries of the da-
tabase of spent fuel library observables can be used.

The training was then repeated one hundred times to try 
different initial values for weights and offset.

It was found initial values for weights and offset can affect 
the mse up to two order of magnitude; this corresponds to 
about 1 order of magnitude change in the resulting 239Pu 
mass standard deviation.

The best obtained value of mse was 2.3×104. The square 
root of mse corresponds to a standard deviation between 
declared and predicted of 239Pu about 150 g. Changing 
the training function between trainlm and trainbr did not 
seem to affect the results.

The deviation between the predicted 239Pu mass and the 
value in the data base is shown in Fig. 7, where the entries 
used for training, validation and testing are shown with dif-
ferent colours.
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ID Flag BU IE CT ID Flag BU IE CT
1 T 5 2 5 5 V 25 2 5

28 T 70 2.5 5 29 V 5 3 5

31 T 15 3 5 35 V 35 3 5

59 T 15 4 5 45 V 15 3.5 5

63 T 35 4 5 57 V 5 4 5

75 T 25 4.5 5 64 V 40 4 5

78 T 40 4.5 5 70 V 70 4 5

85 T 5 5 5 87 V 15 5 5

89 T 25 5 5 91 V 35 5 5

95 T 55 5 5 93 V 45 5 5

Table 3: Selected entries for training (T) and validation (V) data sets.

Figure 6: Training, validation and testing data sets.

Figure 7: Percentage deviation between predicted and nominal 
239Pu amount for training, validation and testing data sets.

In the testing data set, the average deviation between the 
nominal 239Pu content and the calculated one was 0.2% 
with a standard deviation of 3.5% and a maximum devia-
tion of 10%.

4.  Conclusions

We described a data analysis approach based on artificial 
neural networks (ANN) to process the observables associ-
ated to the SINRD technique. The SINRD observables 
were obtained with Monte Carlo based simulations using 
fuel composition from a spent fuel library and represent 
a data set of nearly 3,000 entries.

Given the fact that the SINRD observables are not de-
pending on cooling time up to a cooling time of 10 years, 
we restricted the analysis to the 98 entries with a cooling 
time of 5 years.

While the choice of the initial values of weights and offset 
was kept random, we identified by expert judgement and 
hence natural intelligence, the 20 entries of the database 
to be used for training and validation. The obtained results 
reveal that, the average deviation between the nominal 
239Pu content and the calculated one was 0.2% with 
a standard deviation of 3.5% and a maximum deviation of 
10%.

The selection of spent fuel assemblies based on expert 
judgement is not necessarily the best, in terms of ANN 
precision, but allowed to resolve quickly a problem that 
would have not been possible to solve by selecting on 
a  randomly the database entries for training and 
validation.

Future work will focus on possibly reducing even further 
the size of the data base for training and validation and lim-
iting only on realistic cases of the library of observables. In 
addition, we would like to study a different form of the per-
formance function for example accounting for the relative 
deviations rather than absolute deviations. We would like 
also to analyse data with different cooling times by includ-
ing an additional observables from the observable data-
base in the data analysis.
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