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Abstract

The verification of spent nuclear fuel is a major task during 
a safeguards inspection and inspectors have to verify both 
the correctness and completeness of the operator 
declaration. The traditional way to verify spent fuel is with 
non-destructive assays (NDA) relying on the radiation 
emission from the fuel. The NDA measurement results are 
then compared with estimates based on operator 
declaration of initial enrichment, burnup, and cooling time.

However, the radiation emission from spent fuel is affected 
by the fuel parameters and irradiation history, and research 
is ongoing to improve the data analysis of NDA 
measurement results. In this work artificial neural networks 
were developed to infer the initial enrichment, burnup, and 
cooling time of spent fuel assemblies from simulated NDA 
measurements with the Forkball instrument.

Several neural networks architectures and detector 
responses were compared to find the optimal network 
configuration to infer the spent fuel parameters. Results 
show that the cooling time is the most challenging 
parameter to estimate and the associated data processing 
step plays a crucial role in its reliable estimate. The 
combination of multiple detector responses also leads to a 
significant improvement in the determination of the initial 
enrichment, burnup, and cooling time. The optimal neural 
networks in this study are able to determine the initial 
enrichment and burnup within 12%, and the cooling time, 
using the data processing step, within 4%.

Keywords: neural networks; machine learning; spent fuel; 
NDA; initial enrichment; burnup; cooling time

1. Introduction

The International Atomic Energy Agency (IAEA) has the le-
gal mandate under the Non-Proliferation Treaty (NPT) [1] to 
verify the nuclear material inventory in the States party to 
the treaty. In 2020 safeguards were applied in 183 coun-
tries and in more than 700 facilities [2]. Nuclear power re-
actors represent a significant share of the facilities under 
safeguards, and most of the fissile material inventory is in 
the form of irradiated or spent fuel.

The goal of a safeguards inspection is to verify both the 
correctness and completeness of the declaration given by 
the operator to the IAEA. In the case of spent fuel verifica-
tion, non-destructive assay (NDA) is generally used to 
measure the radiation emitted by spent fuel. The Digital 
Cherenkov Viewing Device (DCVD) and the Fork detector 
are among the most used NDA for spent fuel verification. 
However, these NDA instruments measure mostly emis-
sions due to fission products (e.g. 137Cs) and minor acti-
nides (e.g. 244Cm) since they are the main gamma-ray and 
neutron emitters, respectively [3].

Therefore, to verify the inventory of nuclear material (i.e. 
235U and Pu), the NDA measurement results are compared 
with calculations that rely on operator declarations of fuel 
irradiation history (e.g. initial enrichment, burnup, and cool-
ing time). Recent studies [4] showed that the fuel irradia-
tion history significantly impacts the radiation emission and 
research is ongoing to improve the current data analysis 
approach.

Due to the complexity of the fuel composition and multi-
variate nature of the NDA measurement results, machine 
learning is increasingly applied in the field of spent fuel ver-
ification [5],[6],[7],[8]. Artificial Neural Networks (ANNs) are 
being increasingly chosen for the data analysis of safe-
guards tasks, such as the image analysis and surveillance 
review [9],[10],[11],[12],[13],[14]. In the field of spent fuel veri-
fication, ANNs still have a rather limited application for the 
estimation of the spent fuel parameters [15],[16]. The ANNs 
developed for the different safeguards tasks vary greatly in 
terms of network size and network configuration.

In this work, ANNs were developed using as inputs the de-
tector responses from the Forkball detector [17] with the 
aim of inferring the initial enrichment (IE), burnup (BU), and 
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cooling time (CT) of the spent fuel assembly. A separate 
ANN was developed for each output parameter and differ-
ent ANN architectures were compared in terms of mean 
absolute percentage error.

Previous work [15] published using ANNs for the estima-
tion of spent fuel parameters focused mostly on the train-
ing accuracy and considered small ANNs architectures 
with maximum of 20 neurons per layer. The ANNs present-
ed in this article investigate the effect of data processing of 
the output features and include a detailed discussion on 
the ANNs performance.

The dataset used for the study is introduced in Section 2, 
whereas the ANNs basic principles and architectures are 
described in Section 3. The results from the developed 
ANNs are presented in Section 4 and are followed by dis-
cussion in Section 5. The conclusions from the study are 
summarized in Section 6.

2. Dataset

A dataset containing the detector responses from the 
Forkball detector was used for the development of the 
ANNs in this study. The Forkball detector is an NDA instru-
ment being conceived for underwater measurement of 
spent fuel and combines the detector responses of the 
Fork detector (e.g. total neutron count from the fission 
chambers, current from the ionization chambers) with the 
gamma-ray spectroscopic capabilities of a Cadmium Zinc 

Telluride (CZT) detector [17]. The Forkball detector is made 
up of two polyethylene arms each containing one fission 
chamber and one ionization chamber, connected by a 
large Pb shielding and collimator that hosts the CZT de-
tector. During the measurement, the spent fuel assembly 
is placed between the two polyethylene arms as shown in 
Figure 1.

A total of 1960 Monte Carlo simulations were carried out 
with the MCNPX code [18] to compute the Forkball detec-
tor responses for fuel assemblies with a wide range of ini-
tial enrichment, burnup, and cooling time. The approach 
for the calculation of the detector responses is described 
in [15], and an extract of the dataset is shown in Table 1. 
The detector responses were taken as input features of 
the ANNs whereas either the initial enrichment, burnup, or 
cooling time was taken as output feature of the ANNs. The 
initial enrichment ranged from 2.0% to 5.0% in steps of 
0.5%, the burnup ranged from 5 GWd/tHM to 70 GWd/tHM in 
steps of 5 GWd/tHM, and the cooling time ranged from 1 
day to 100 years with 18 intermediate values. Since the 
cooling time values were logarithmically separated, the 
variable CT’ was also considered as output feature

      (1)

Figure 1: 2-D view of the Monte Carlo model of the Forkball detector measuring a spent fuel assembly. Figure taken from [6].
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Input features
Output features

Fission chamber
Ionization 
chamber

Cadmium Zinc Telluride

Total 
neutrons 
(cps)

Fast 
neutrons 
(cps)

Current 
(nA)

134Cs, 
605 keV 
(cps)

137Cs, 
662 keV 
(cps)

134Cs, 
796 keV 
(cps)

154Eu, 
1274 
keV 
(cps)

IE 
(%)

BU 
(GWd/t)

CT 
(y)

CT’ 
(ln(y))

1.4 0.6 154.8 85.0 466.4 147.4 4.4 2.0 5 1 10.00

1.2 0.5 12.7 11.3 406.0 19.6 2.7 2.0 5 7 11.95

1.0 0.4 6.5 <0.1 238.8 <0.1 0.3 3.5 5 30 13.40

10.2 4.7 42.1 73.4 1207.4 127.3 17.8 4.0 15 7 11.95

9.9 4.5 5.1 <0.1 186.8 <0.1 <0.1 2.5 20 100 14.61

108.4 49.8 71.9 146.2 1950.4 253.5 49.4 3.5 25 8 12.08

1142.6 524.7 634.4 3060.9 3174.5 5308.4 172.9 2.5 35 1 10.00

110.0 51.5 32.1 <0.1 1166.3 <0.1 3.6 4.5 40 50 13.91

108.4 49.8 71.9 146.2 1950.4 253.5 49.4 3.5 25 8 12.08

1142.6 524.7 634.4 3060.9 3174.5 5308.4 172.9 2.5 35 1 10.00

110 51.5 32.1 0 1166.3 0 3.6 4.5 40 50 13.91

3. Artificial neural networks

3.1 Basic principles

ANNs are a subset of machine learning models that aim to 
replicate with mathematical functions the neurons in a bio-
logical brain. ANNs can be used as universal function 

approximators [19] and are being developed for a wide 
range of applications such as pattern recognition [20], data 
mining [21], and cyber security [22]. In the nuclear field 
ANNs have been used recently for example in gamma-ray 
spectroscopy [23], severe accident analysis [24], and nu-
clear medicine [25]. 

Table 1: Extract of the dataset containing the simulated detector responses of the Forkball (input features) and the corresponding initial 
enrichment (IE), burnup (BU), cooling time (CT), and CT’ (output features). The detector responses included in the table are rounded to 
the first decimal digit.

Figure 2: example of ANN architecture used for this study. The ANN includes all input features, two hidden layers each with 10 neurons, 
and initial enrichment as output variable. The ANN is fully connected but for graphical reasons not all connections among neurons are 
included in the figure.
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The building unit of the ANN is the artificial neuron which, 
as the biological neuron, receives input signals and 
through an activation function and bias produces an out-
put signal [19].

The general structure of an ANN (also called network ar-
chitecture) is shown in Figure 2. The dataset observables 
are first connected to the so-called input layer via a scaling 
function that is usually recommended to improve the mod-
el accuracy and speed of convergence [26]. The input lay-
er is followed by one or more hidden layers and finally by 
an output layer. The output of the output layer may be 
again re-scaled to obtain the desired output variables. 
Neurons in one layer can be either connected to all neu-
rons in the following layer (so-called fully connected net-
works), or a group of neurons can be connected only to 
one neuron in the following layer (so-called pooling net-
works) [27].

Fully connected ANNs are used for a broad range of appli-
cations, whereas pooling networks are generally used for 
image analysis [28]. Fully connected ANNs were devel-
oped in this work since they do not require any assump-
tion to be made on the input features.

The general equation for an artificial neuron is:

            

(2)

Where yi is the neuron output, fi is the activation function, 
N is the number of input neurons to neuron i, wi,j is the 
weight of the connection between input neuron j and neu-
ron i, xi is the neuron input, and bi is the bias for neuron i. 
In case of fully connected ANNs N is the same for each 
neuron in one layer.

The development of an ANN model can be divided into a 
training phase and a prediction phase. The observations in 
the dataset are randomly divided thus into a training data-
set and testing dataset. The weights and biases of each 
neuron are initialized with random values at the start of the 
training phase, and then are optimized according to a loss 
function and optimization function defined by the user. The 
activation function for each layer and the number of itera-
tions (also called epochs) performed during the training 
phase are also specified by the user. The weights and bi-
ases optimized during the training phase are finally used in 
the prediction phase on the observations in the testing 
dataset

3.2 Network architecture

Several ANN architectures were developed and compared 
in this study. During the development of the ANNs the ob-
servations in the full dataset have been randomly divided 
into training dataset (70% of observations) and testing 

dataset (30% of observations). The training dataset was 
further split into 5 folds to perform a k-fold cross-validation 
analysis [29].

ANNs were developed considering one input feature (e.g. 
total neutron count) only or combining all available input 
features from the Forkball. Before entering the ANN the in-
put features were scaled to a distribution centred around 0 
and with standard deviation of 1. The scaling factors are 
determined using the training dataset and the scaling is 
then applied to both training and testing datasets.

Both one and two hidden layers were considered, with the 
number of neurons ranging from 10 to 500 and Relu [30] 
activation functions for the hidden layers. The network op-
timization was carried out using the mean absolute per-
centage error (mape) as loss function and the ADAM [31] 
optimizer with 10-3 learning rate. The mape loss function 
was calculated according to the formula [32]:

 
 

 
  

(3)

Where ytrue is the true value of the i-th sample, ypred is the 
corresponding predicted value, nsamples is the number of 
samples, and ϵ is an arbitrary small yet strictly positive 
number to avoid undefined results when ytrue is zero. The 
mape loss function was chosen as metric for the ANNs 
performance because it is sensitive to the relative errors 
rather than the global scaling of the output features.

The optimization phase was carried out for 100 epochs 
and the algorithm convergence was verified by plotting the 
loss function as a function of the number of epochs.

For each ANN architecture, the split of the dataset into 
training and testing datasets was repeated 10 times and 
each time the mape was recorded. The ANN performance 
was finally calculated as the average and standard devia-
tion of the mape for the training, validation, and testing 
datasets over the 10 repetitions. Similar results were ob-
tained for the calculated mape, therefore only the values 
related to the testing datasets are reported in the paper.

4. Results

4.1 One hidden layer ANN

ANNs with one hidden layer were developed and the num-
ber of neurons in the hidden layer was taken as the only 
hyper-parameter for optimization of the network architec-
ture. The comparison between the output parameter of 
the ANN and the declared value is shown in Figure 3 for 
initial enrichment and burnup. The same comparison is 
shown in Figure 4 for cooling time and CT’. The mape of 
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the ANNs is shown as a function of the number of neurons 
in the hidden layer.

The results for the determination of the initial enrichment 
show that by using one feature only as input to the ANN, 

the error on the estimated initial enrichment is about 25% 
with almost no appreciable dependence on the number of 
neurons in the hidden layer. However, combining all fea-
tures, the mape of the ANN estimate decreases with the 
number of neurons from 15.5% with 10 neurons down to 

Figure 4: Mean absolute percentage error for the determination of the cooling time (left) and CT’ (right). The values refer to ANNs with one 
hidden layer and the mape is shown as a function of the number of neurons in the ANN.

Figure 3: Mean absolute percentage error for the determination of the initial enrichment (left) and burnup (right). The values refer to ANNs 
with one hidden layer and the mape is shown as a function of the number of neurons in the ANN.
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9.4% with 500 neurons. It is observed that the reduction in 
mape is larger up to 125 neurons in the ANN (mape of 
10.5%) and remains rather stable by further increasing the 
number of neurons. The uncertainty associated to the 
mape due to the random selection of observations in the 
training dataset is for all cases within 1%. The uncertainty 
mentioned here and in the rest of the paper is resulting 
from the 10 iterations of the random splitting of observa-
tions in the training and testing datasets.

In case of burnup determination, by using the fission 
chamber features individually (i.e. Total neutrons, Fast neu-
trons) the mape decreases with the number of neurons 
from 45% with 10 neurons down to 30% with 500 neu-
rons. The mape using the ionization chamber feature (Cur-
rent) remains around 66% independently from the number 
of neurons, whereas using the gamma-ray spectroscopy 
features the mape slightly decreases with the number of 
neurons from 12.6% with 10 neurons down to 10.4% with 
500 neurons. By combining all features, the mape ranges 
from 13.6% with 10 neurons to 9.6% with 500 neurons. As 
in the case of the initial enrichment determination, the larg-
est decrease in mape was observed increasing the ANN 
size up to 125 neurons. The uncertainty associated to the 
mape due to the selection of observations in the training 
dataset is within 4% when using fission chamber features 
and within 2% using the ionization chamber feature. The 
uncertainty decreases to within 1% in almost all cases by 
using the gamma-ray spectroscopy features or combining 
all features in the ANN.

The results for the determination of the cooling time show 
that the mape is for many cases above 100% and signifi-
cantly larger compared to the determination of the initial 
enrichment and burnup. Therefore, in the rest of the paper, 
the cooling time variable was not considered anymore in 
the analysis. Compared to the cooling time variable, the 
mape values for CT’ significantly improve and are between 
27-28% using the fission chamber features, between 7.4% 
and 5.1% using the ionization chamber feature, between 
15.2% and 11% using the gamma-ray spectroscopy fea-
tures, and between 5.1% and 2.8% combining all features. 
The mape  for the CT’ feature is expressed in years once 
the feature has been transformed using the inverse func-
tion of Formula (1). Apart from the case of using only fis-
sion chamber features, the mape decreases by increasing 
the size of the ANN, with the most significant decrease 
with ANN of up to 125 neurons. The uncertainty associat-
ed to the mape due to the selection of observations in the 
training dataset is within 2% when using only fission cham-
ber features, and within 1% in all other cases.

The cooling time values available in the dataset are loga-
rithmically spaced and the transformation of Formula (1) al-
lows to define the CT’ variable with linearly spaced values. 
This feature transformation leads to a strong reduction of 
the mape for the ANNs using the CT’ feature and is 

another evidence of the importance of data processing in 
case of variables that have a large range of values.

The other output features in the dataset are not trans-
formed using equivalents of Formula (1) since they are al-
ready linearly spaced in the dataset.

4.2 Two hidden layers ANN

ANNs with two hidden layers were developed by using the 
features of the Forkball instrument and the number of neu-
rons in both hidden layers as hyper-parameters. The mape 
for the determination of the spent fuel parameters is shown 
in Table 2 for ANN models using all features available for the 
Forkball instrument. Results for models using only one fea-
ture are not included since they obtained significantly larger 
mape. The mape for the determination of the CT’ feature is 
expressed in years once the feature has been transformed 
using the inverse function of Formula (1). Results using the 
cooling time as output feature for the ANNs are not includ-
ed since the estimates showed unreliable results as in the 
previous section.

The mape for the initial enrichment estimate shows a limited 
decrease from 13.2% in the case of ANN with 10 neurons in 
each hidden layer to 8.9% for ANN with 75 neurons in each 
hidden layer. However, the mape does not decrease further 
by increasing the number of neurons in any of the hidden 
layers and reaches 8.7% in the case of ANN with 500 neu-
rons in each hidden layer. The results suggest that the 
choice of the hidden layer to be increased in size is not cru-
cial, but slightly smaller mape were obtained with ANNs 
with equal number of neurons in each hidden layer. The un-
certainty associated to the mape due to the selection of ob-
servations in the training dataset is within 1% for almost all 
ANN models.

The mape for the burnup estimate also shows a limited de-
crease from 11.4% in the case of ANN with 10 neurons in 
each hidden layer to 8.4% for ANN with 75 neurons in each 
hidden layer. As for the initial enrichment estimation, the 
mape does not decrease further by increasing the number 
of neurons in any of the hidden layers and reaches 7.7% in 
the case of ANN with 500 neurons in each hidden layer. The 
results suggest that the choice of the hidden layer to be in-
creased in size is not crucial, but slightly smaller mape were 
obtained with ANNs with equal number of neurons in each 
hidden layer. The uncertainty associated to the mape due to 
the selection of observations in the training dataset is within 
1% for almost all ANN models.

The mape for the CT’ estimate shows a limited decrease 
from 3.9% in the case of ANN with 10 neurons in each hid-
den layer to 2.4% for ANN with 500 neurons in each hidden 
layer. The uncertainty associated to the mape due to the se-
lection of observations in the training dataset is within 0.5% 
for almost all ANN models.
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A
Initial enrichment - Number of neurons in the second hidden layer

10 25 50 75 100 125 150 200 250 300 400 500
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r 10 13.2 ± 0.7 12.4 ± 1.0 11.7 ± 0.5 11.3 ± 0.8 11.0 ± 1.0 10.3 ± 0.6 10.5 ± 0.7 10.3 ± 0.5 10.7 ± 0.7 10.5 ± 0.6 9.8 ± 0.4 9.9 ± 0.6

25 11.4 ± 0.9 10.4 ± 0.5 10.4 ± 0.5 10.3 ± 0.6 9.7 ± 0.9 9.3 ± 0.4 9.5 ± 0.6 9.5 ± 0.4 9.2 ± 0.4 9.0 ± 0.7 9.3 ± 0.5 8.9 ± 0.6

50 10.1 ± 0.6 9.8 ± 0.6 9.4 ± 0.5 9.1 ± 0.4 9.3 ± 0.5 9.3 ± 0.8 9.4 ± 0.8 9.0 ± 0.7 8.7 ± 0.8 9.0 ± 0.6 8.9 ± 0.7 8.3 ± 0.5

75 9.6 ± 0.6 9.2 ± 0.7 9.1 ± 0.4 8.9 ± 0.6 8.8 ± 0.5 8.5 ± 0.7 8.6 ± 0.8 8.4 ± 0.5 8.6 ± 0.6 8.5 ± 0.7 8.5 ± 0.9 8.5 ± 0.7

100 9.5 ± 0.8 9.1 ± 0.5 9.1 ± 0.5 9.1 ± 0.6 8.7 ± 0.6 8.9 ± 0.7 8.6 ± 0.5 8.7 ± 0.6 8.5 ± 0.7 8.5 ± 1.0 8.3 ± 0.7 8.3 ± 1.3

125 9.7 ± 0.3 9.4 ± 0.6 9.1 ± 0.8 8.7 ± 0.6 8.6 ± 0.6 8.8 ± 0.9 8.5 ± 0.6 9.3 ± 1.0 8.6 ± 0.6 8.1 ± 0.6 8.4 ± 0.8 8.3 ± 0.7

150 9.3 ± 0.5 9.3 ± 0.6 9.2 ± 1.0 9.0 ± 0.6 8.7 ± 0.9 8.6 ± 0.4 9.0 ± 1.2 8.7 ± 0.6 8.5 ± 0.6 8.5 ± 1.0 8.0 ± 0.7 8.2 ± 0.9

200 9.5 ± 0.8 8.8 ± 0.6 8.8 ± 0.5 9.1 ± 0.6 8.9 ± 0.9 8.6 ± 0.6 8.3 ± 0.7 8.6 ± 0.5 8.2 ± 0.6 8.4 ± 0.9 8.1 ± 0.3 9.1 ± 1.6

250 9.0 ± 0.4 9.0 ± 0.5 8.9 ± 0.6 8.6 ± 0.6 8.6 ± 0.7 8.6 ± 0.5 8.4 ± 0.3 8.4 ± 0.8 8.4 ± 0.5 8.2 ± 0.7 8.3 ± 0.5 8.7 ± 1.4

300 9.1 ± 0.4 9.2 ± 0.4 8.7 ± 0.6 9.2 ± 1.1 8.4 ± 0.8 8.8 ± 0.6 8.5 ± 0.5 8.7 ± 1.4 8.6 ± 0.6 8.5 ± 1.1 9.0 ± 1.1 8.1 ± 0.5

400 9.0 ± 0.4 9.1 ± 0.6 8.6 ± 0.7 8.2 ± 0.4 9.2 ± 1.3 8.9 ± 1.0 8.7 ± 0.9 8.6 ± 0.5 8.2 ± 0.4 8.4 ± 0.5 8.6 ± 1.1 7.9 ± 0.9

500 9.2 ± 0.6 9.0 ± 0.6 9.0 ± 0.8 8.9 ± 0.7 8.1 ± 0.9 9.2 ± 1.2 9.0 ± 0.7 8.6 ± 0.8 8.5 ± 1.0 8.4 ± 0.9 8.0 ± 1.0 8.7 ± 1.1

B
Burnup - Number of neurons in the second hidden layer

10 25 50 75 100 125 150 200 250 300 400 500

N
um

be
r o

f n
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fir

st
 h

id
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ye
r 10 11.4 ± 1.0 10.6 ± 0.8 10.6 ± 0.8 10.3 ± 0.8 10.4 ± 1.2 10.0 ± 0.7 9.9 ± 0.7 9.5 ± 0.7 9.4 ± 1.0 9.5 ± 0.8 8.9 ± 0.7 9.1 ± 0.5

25 10.5 ± 1.1 10.0 ± 0.8 9.4 ± 0.9 9.2 ± 0.7 9.2 ± 0.8 8.6 ± 0.8 8.7 ± 1.1 8.5 ± 0.7 8.3 ± 0.4 8.2 ± 0.6 8.7 ± 0.7 7.8 ± 1.0

50 9.5 ± 0.5 9.5 ± 0.8 8.8 ± 0.6 8.6 ± 0.7 8.3 ± 0.6 8.4 ± 0.4 8.3 ± 0.7 8.6 ± 0.7 7.8 ± 0.6 7.9 ± 0.6 8.4 ± 0.6 7.8 ± 0.6

75 9.1 ± 0.6 9.2 ± 0.9 8.6 ± 0.8 8.4 ± 0.6 8.6 ± 0.6 8.3 ± 0.8 8.0 ± 0.4 8.1 ± 0.6 7.9 ± 0.6 8.2 ± 0.5 7.8 ± 0.9 7.7 ± 0.8

100 9.2 ± 0.7 9.1 ± 0.6 8.9 ± 1.1 8.6 ± 0.8 8.2 ± 0.6 8.2 ± 0.6 8.1 ± 0.9 8.1 ± 0.7 8.0 ± 0.6 7.5 ± 0.8 7.6 ± 0.9 7.6 ± 0.7

125 9.4 ± 0.8 8.7 ± 0.9 8.8 ± 0.8 8.5 ± 0.7 8.1 ± 0.9 8.0 ± 0.5 8.3 ± 0.6 7.9 ± 0.9 8.0 ± 0.7 7.8 ± 0.9 7.9 ± 0.6 7.8 ± 0.7

150 9.6 ± 0.9 9.4 ± 0.8 8.6 ± 0.6 8.4 ± 0.5 8.2 ± 0.6 8.8 ± 0.7 8.6 ± 0.7 8.3 ± 0.8 7.8 ± 0.7 7.9 ± 0.6 7.6 ± 0.9 7.8 ± 1.1

200 9.7 ± 0.8 8.6 ± 0.5 8.3 ± 0.7 8.3 ± 0.8 9.2 ± 0.5 8.4 ± 0.8 8.2 ± 1.0 8.0 ± 0.7 8.2 ± 0.8 8.1 ± 0.9 8.1 ± 0.7 7.8 ± 1.3

250 8.7 ± 0.7 8.7 ± 0.9 8.6 ± 0.9 8.4 ± 0.5 8.6 ± 0.8 8.2 ± 0.6 8.6 ± 0.7 8.1 ± 0.3 8.3 ± 0.9 7.4 ± 0.8 7.7 ± 0.8 7.4 ± 0.8

300 8.8 ± 0.6 9.0 ± 0.5 8.4 ± 0.5 9.0 ± 1.2 8.5 ± 0.6 8.6 ± 0.7 8.4 ± 0.8 8.4 ± 0.8 8.2 ± 0.9 8.0 ± 0.9 7.7 ± 0.8 7.8 ± 0.9

400 8.7 ± 0.8 8.5 ± 0.9 8.3 ± 0.8 8.2 ± 1.0 8.4 ± 0.8 8.4 ± 0.8 8.2 ± 0.8 8.3 ± 0.7 8.4 ± 0.6 8.3 ± 0.8 8.3 ± 1.0 7.3 ± 1.0

500 9.0 ± 0.7 8.4 ± 0.4 8.3 ± 1.0 8.5 ± 0.9 8.1 ± 0.8 8.3 ± 0.7 8.2 ± 0.5 8.4 ± 0.7 8.1 ± 0.8 8.0 ± 1.0 7.6 ± 0.7 7.7 ± 1.1

C
Cooling time - Number of neurons in the second hidden layer

10 25 50 75 100 125 150 200 250 300 400 500
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r 10 3.9 ± 0.3 3.5 ± 0.4 3.4 ± 0.2 3.2 ± 0.1 3.1 ± 0.2 3.1 ± 0.2 3.0 ± 0.2 2.9 ± 0.3 2.8 ± 0.4 2.7 ± 0.3 2.7 ± 0.3 2.6 ± 0.3

25 3.3 ± 0.2 3.1 ± 0.3 3.0 ± 0.3 2.8 ± 0.2 2.7 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.7 ± 0.3 2.4 ± 0.2 2.4 ± 0.2 2.6 ± 0.3 2.4 ± 0.2

50 2.9 ± 0.3 2.8 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.2 2.4 ± 0.3 2.3 ± 0.3

75 2.6 ± 0.3 2.6 ± 0.3 2.8 ± 0.2 2.6 ± 0.2 2.6 ± 0.3 2.5 ± 0.3 2.5 ± 0.3 2.3 ± 0.3 2.5 ± 0.2 2.4 ± 0.2 2.5 ± 0.2 2.3 ± 0.1

100 3.1 ± 0.1 2.7 ± 0.3 2.8 ± 0.4 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.3 2.6 ± 0.4 2.5 ± 0.3 2.4 ± 0.3 2.5 ± 0.3 2.6 ± 0.4 2.5 ± 0.3

125 3.0 ± 0.2 2.7 ± 0.3 2.7 ± 0.5 2.5 ± 0.2 2.7 ± 0.3 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.3 2.3 ± 0.2 2.6 ± 0.4 2.4 ± 0.3 2.6 ± 0.2

150 2.9 ± 0.3 3.0 ± 0.2 2.8 ± 0.4 2.7 ± 0.3 2.7 ± 0.5 2.6 ± 0.2 2.6 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.6 ± 0.3 2.5 ± 0.4 2.5 ± 0.4

200 2.6 ± 0.2 2.8 ± 0.3 2.6 ± 0.3 2.9 ± 0.3 2.9 ± 0.3 2.7 ± 0.3 2.7 ± 0.2 2.7 ± 0.3 2.6 ± 0.4 2.7 ± 0.4 2.5 ± 0.4 2.5 ± 0.1

250 2.8 ± 0.3 2.6 ± 0.2 2.8 ± 0.3 2.8 ± 0.3 2.8 ± 0.4 2.8 ± 0.4 2.6 ± 0.2 2.6 ± 0.3 2.7 ± 0.3 2.6 ± 0.3 2.5 ± 0.3 2.5 ± 0.3

300 2.7 ± 0.2 2.8 ± 0.3 2.7 ± 0.3 2.8 ± 0.2 2.8 ± 0.4 2.6 ± 0.3 2.6 ± 0.3 2.4 ± 0.4 2.9 ± 0.3 2.6 ± 0.2 2.5 ± 0.3 2.6 ± 0.2

400 2.9 ± 0.3 2.8 ± 0.3 2.7 ± 0.3 2.8 ± 0.2 2.6 ± 0.3 2.8 ± 0.4 2.6 ± 0.3 2.8 ± 0.5 2.7 ± 0.4 2.6 ± 0.4 2.9 ± 0.4 2.7 ± 0.5

500 2.7 ± 0.2 2.7 ± 0.3 2.8 ± 0.3 2.8 ± 0.4 2.8 ± 0.3 2.8 ± 0.3 2.6 ± 0.2 2.5 ± 0.3 2.4 ± 0.3 2.5 ± 0.3 2.4 ± 0.3 2.4 ± 0.5

Table 2: Mape for the determination of the initial enrichment (top), burnup (middle), and CT’ (bottom). The results for ANNs with 10, 75, 
and 500 neurons are highlighted for comparison.
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5. Discussion

5.1 Comparison between one hidden layer and two 
hidden layers ANN

The comparison of mape obtained for ANNs with one hid-
den layer and two hidden layers was conducted as the 
next step. All detector responses from the Forkball detec-
tor were considered as input features of the ANNs since 
the previous sections showed that including only a few in-
put features led to larger mape. The results are shown in 
Figure 5 as a function of the number of neurons in the hid-
den layer(s). In the case of ANNs with 2 hidden layers the 
same number of neurons was chosen in each layer.

The results in Figure 5 show that in general the ANNs with 
two hidden layers reach a smaller mape compared to the 
case of ANNs with one hidden layer.

The mape for the initial enrichment estimate shows a de-
crease by increasing the number of neurons in the hidden 
layer from 15.5% in the case of one hidden layer ANN with 
10 neurons to 9.4% for one hidden layer ANN with 500 
neurons. In the case of two hidden layers ANNs the mape 
decreases from 13.2% for ANN with 10 neurons in each 
hidden layer to 8.7% for ANN with 500 neurons. The un-
certainty associated to the mape due to the selection of 
observations in the training dataset is within 1% for almost 
all ANN models. A similar decreasing trend is observed for 
one hidden layer and two hidden layers ANNs with limited 
improvement of the mape by increasing above 100 the 
number of neurons in the ANNs.

The mape for the burnup estimate shows a decrease by 
increasing the number of neurons in the hidden layer from 
13.6% in the case of one hidden layer ANN with 10 neu-
rons to 9.6% for one hidden layer ANN with 500 neurons. 
In the case of two hidden layers ANNs the mape decreas-
es from 11.4% for ANN with 10 neurons in each hidden 
layer to 7.7% for ANN with 500 neurons. The uncertainty 
associated to the mape due to the selection of observa-
tions in the training dataset is within 1% for almost all ANN 
models. A similar decreasing trend is observed for one 
hidden layer and two hidden layers ANNs with limited im-
provement of the mape by increasing above 100 the num-
ber of neurons in the ANN.

The mape for the CT’ estimate shows a decrease by in-
creasing the number of neurons in the hidden layer from 
5.1% in the case of one hidden layer ANN with 10 neurons 
to 2.8% for one hidden layer ANN with 500 neurons. In the 
case of two hidden layers ANNs the mape decreases from 
3.9% for ANN with 10 neurons in each hidden layer to 
2.4% for ANN with 500 neurons. The uncertainty associat-
ed to the mape due to the selection of observations in the 
training dataset is within 0.5% for almost all ANN models. 
A similar decreasing trend is observed for one hidden layer 
and two hidden layers ANNs with limited improvement of 
the mape by increasing above 50 the number of neurons 
in the ANN.

The results from this study are in general agreement with 
earlier ANN models developed at SCK CEN [15]. Previous 
research concluded that ANNs were able to estimate the 
initial enrichment within 2% for 98% of the cases, the 

Figure 5: Mean absolute percentage error for the determination of initial enrichment, burnup, and CT’. The values refer to ANNs with one 
hidden layer and with two hidden layers and are shown as a function of the number of neurons in the ANN.
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Figure 6: distribution of mean absolute percentage error for the determination of initial enrichment, burnup, and CT’. The training and 
testing of each ANN architecture was repeated for 1000 iterations, each time with a random partition of the dataset. 

Table 3: Mean absolute percentage error average, standard deviation, and relative standard deviation for the determination of initial 
enrichment (top), burnup (middle), and CT’ (bottom).

(a) Initial enrichment 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 11.1 9.5 8.8 8.5

Standard deviation 0.6 0.6 0.6 1.0

Rel. standard deviation 5% 6% 7% 12%

(b) Burnup 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 10.9 9.8 8.4 7.8

Standard deviation 0.8 0.8 0.8 0.9

Rel. standard deviation 8% 8% 10% 11%

500 neurons 1 hidden layer, 1 hidden layer, 2 hidden layers, 2 hidden layers,

Average 3.3 3.0 2.6 2.6

Standard deviation 0.2 0.2 0.3 0.4

Rel. standard deviation 6% 8% 11% 17%

burnup within 3% for 96% of the cases, and the cooling 
time within 10% for 87% of the cases. However, the val-
ues reported in previous research refer to estimates in the 
training dataset, therefore they should be considered as 
overestimations of ANNs accuracy. The reason for the 
large error for the cooling time estimate is probably due to 
lack of data processing, different activation function, and 
optimization algorithm used in previous research.

The performance of ANNs with 1 hidden layer and 100 
neurons are in line also with published work on the deter-
mination of spent fuel parameters using the Fork detector. 
Research [33] showed that by using calibration measure-
ments, difference between measured and declared burn-
up is within 2% for cooling times longer than 3 years and 
burnup between 30 and 55 GWd/tU. The deviation in-
creases outside these validity ranges up to 27%. Results 
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from verification campaigns using the Fork detector 
showed that the relative standard deviation between 
measured and calculated count rates is less than 8% for 
neutron detectors and less than 7% for gamma-ray detec-
tors [34].

Data analysis procedures applied in previous work [33],[34] 
are based either on calibration curves or rely on operator 
data to estimate the spent fuel parameters. In contrast, the 
ANNs developed in this study reach a similar performance 
in the estimation of the fuel parameters without additional 
input features than the detector responses.

5.2 Optimization of ANN size to reduce overfitting

A set of ANNs with different architectures was selected for 
further comparison. ANNs with either one hidden layer or 
two hidden layers and either 100 neurons or 500 neurons 
in each layer were chosen. The ANNs with 100 neurons 
were chosen because in the previous section they showed 
small improvements in the mape compared to larger 
ANNs. Several rule of thumbs have been proposed to link 
the size of the ANN to the minimum dataset size to obtain 
reliable estimates [35]. It is generally thought that larger 
ANNs require larger amount of data to converge, and 
smaller ANNs are in general preferred because they tend 
to reduce the risk of overfitting the training dataset. There-
fore, the objective of this section is to optimize the ANN 
size in order to reduce overfitting.

For each ANN the training and testing was repeated for 
1000 iterations, each time with a random partition of the 
dataset. The mape was recorded for each iteration and the 
distribution is shown in Figure 6. The mape average value, 
standard deviation, and relative standard deviation com-
pared to the average value were calculated for each ANN 
architecture and are summarized in Table 3.

The distributions shown in Figure 6 follow quite well the 
shape of a normal distribution. However, in the case of 
ANNs with two hidden layers and 500 neurons in each 
hidden layer the distributions for the determination of initial 
enrichment and cooling time show a long tail on the high-
mape side of the distribution. This can be an effect of the 
overfitting of the dataset due to the large size of the ANNs.

The values included in Table 3 highlight the reduction of 
the mape average value by increasing the size and number 
of hidden layers. However, the table shows also that the 
decrease of the mape average value is countered by the 
increase of the mape standard deviation and relative 
standard deviation compared to the average value. The 
comparison in this section indicates that ANNs with 1 hid-
den layer and 100 neurons are already effective in inferring 
initial enrichment, burnup, and CT’ of spent fuel assem-
blies. Further enlarging the ANN architecture leads to an 
increase in the relative standard deviation of the estimate 
and risk of model overfitting.

6.  Conclusions

Several ANNs were developed using as input features the 
simulated detector responses of the Forkball detector with 
the aim of inferring the initial enrichment, burnup, or cool-
ing time of spent fuel assemblies. ANN models with one 
hidden layer and two hidden layers were considered, set-
ting the number of neurons as hyper-parameter in the 
study. The ANNs performance was measured with the 
mape between the predicted and declared value of the 
output feature.

The results from ANNs with one hidden layer showed that 
combining all detector responses from the Forkball detec-
tor leads to a decrease of the mape compared to the cas-
es using only one detector response. In general it was ob-
served that the mape decreases by increasing the number 
of neurons in the hidden layer, but the reduction is larger 
up to 125 neurons and the mape remains rather stable by 
further increasing the number of neurons. The data pro-
cessing of the cooling time variable was essential to obtain 
a reliable estimate from the ANN. The CT’ feature, ob-
tained with a logarithmic function from the cooling time, 
was used throughout the study to obtain an estimate of 
the cooling time because ANNs using the cooling time fea-
ture obtained very large mape. The ANNs with 500 neu-
rons in the hidden layer were able to estimate the initial en-
richment with a mape of 9.4%, the burnup with a mape of 
9.6%, and the cooling time - via the CT’ feature - with a 
mape of 2.8%. The uncertainty associated to the mape 
due to the selection of observations in the training dataset 
is within 1% for almost all cases.

Considering the results from the ANNs with one hidden 
layer, ANNs with two hidden layers were developed only 
using all features from the Forkball detector, and process-
ing the cooling time variable for the corresponding ANNs. 
The results from ANNs with two hidden layers showed a 
reduction of the mape by increasing the number of neu-
rons in the hidden layers, but the decrease is rather limited 
for ANNs with more than 75 neurons. It was observed also 
that the mape is slightly smaller for ANNs with equal num-
ber of neurons in each hidden layer. The ANNs with 500 
neurons in both hidden layers were able to estimate the in-
itial enrichment with a mape of 8.7%, the burnup with a 
mape of 7.7%, and the cooling time – via the CT’ feature - 
with a mape of 2.4%. The uncertainty associated to the 
mape due to the selection of observations in the training 
dataset is within 1% for the estimates of initial enrichment 
and burnup, and within 0.5% for the estimate of cooling 
time.

The mape average value decreases by increasing the 
number of neurons and the number of hidden layers in the 
ANNs. However, this effect is countered by the increase of 
the mape standard deviation and relative standard devia-
tion compared to the mape average value.
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Based on the results presented in the paper, and given the 
size of the available dataset, it is recommended to use 
ANNs with 1 hidden layer and 100 neurons for the estima-
tion of the spent fuel parameters. Such ANNs are already 
effective in inferring the initial enrichment and burnup with-
in 12%, and the cooling time – via the CT’ feature - within 
4%. The deviation between declared values and estimates 
from the ANNs are similar to data analysis procedures 
used for the Fork detector. However, current data analysis 
procedures rely either on calibration curves or on operator 
data, whereas the ANNs developed in this study require 
only the detector responses as input features.

Future work will focus on the optimal ANN configurations 
obtained in this study to evaluate if the mape of the devel-
oped ANNs are constant over the range of initial enrich-
ment, burnup, and cooling time. The possibility of simulta-
neous estimation of the three output parameters by a 
single ANN will also be investigated.
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