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Abstract

Safeguards verification of spent nuclear fuel assemblies is 
f requent ly done by per forming non-destruct ive 
measurements, which are used to verify the completeness 
and correctness of operator declarations such as initial 
enrichment (IE), burnup (BU) and cooling time (CT) of the 
fuel. However, different irradiation histories may result in 
the same combination of CT, BU and IE, and such fuels 
may behave differently despite identically declared values. 
The goal of this work is to investigate what effect the 
irradiation history has on the ability to predict the fuel 
parameters using random forest regression. 

Random forest regression models were trained to predict 
the fuel parameters IE, BU and CT based on combinations 
of radiation signatures calculated from a previously 
modelled Pressurised Water Reactor (PWR) spent nuclear 
fuel library. The radiation signatures studied were the 
relative gamma-ray activities of Cs137, Cs134 and Eu154, 
their total gamma-ray activity, the total neutron emission 
rate and the parametrised early die-away time τ from the
Differential Die-away Self Interrogation (DDSI) instrument. 
The per formance of the models were tested on 
simulations of 2192 PWR fuel assemblies from the 
Ringhals 3 and 4 nuclear power plants in Sweden, which 
were simulated based on their documented irradiation 
histories. 

Despite significant dif ferences in irradiation history 
between the training and testing data sets, the Ringhals 
assembly parameters could be predicted with similar 
accuracy as for assemblies in the training set. The relative 
gamma-ray activities were sufficient to predict the CT with 
an RMSE of 2 years, and adding a total gamma or total 
neutron signature allowed the BU to be predicted with an 
RMSE of 1.4 MWd/kgU. The DDSI early die-away time τ 
enabled an accurate IE prediction, with an RMSE of 0.16 
w%. The dif ferences between irradiation histories 
introduced a systematic bias where CT was overestimated 
by about 1 year and the BU by about 1.5 MWd/kgU.

Keywords: Nuclear safeguards, fuel parameter prediction, 
machine learning, random forest regression, irradiation 
history

1. Introduction

One of the many tasks undertaken by international nuclear 
safeguards inspectors is the verification of spent nuclear 
fuel (SNF) assemblies. Such verifications are done both to 
verify that the assemblies do indeed contain nuclear mate-
rial (gross defect verification) and that parts of the fuel as-
sembly have not been diverted (partial defect verification). 
However, due to the intense radiation emission from fission 
products and minor actinides, a direct determination of the 
fissile content is challenging. As a pragmatic solution, most 
verifications are done using non-destructive assay, aimed 
at verifying that operator-declared fuel parameters, such 
as cooling time (CT), burnup (BU) and initial enrichment (IE) 
are consistent with the measured radiation emissions. 
Computer codes are then used to estimate the fissile ma-
terial inventories of the fuel assemblies using CT, BU and 
IE. These results are combined with other safeguards rele-
vant information to evaluate the completeness and cor-
rectness of declarations and compliance with international 
non-proliferation treaties. 

Before SNF assemblies are placed in difficult-to-access 
storage, such as dry storage or deep geological repository, 
the completeness and correctness of the operator 
declarations must be verified to high accuracy and 
precision, since it may not be possible to re-verify the data 
after storage. Traditionally, inspectors select an instrument 
that can measure the fuel assembly inventory at sufficient 
accuracy and precision, and bring the instrument to the 
fuel storage to perform a verification campaign. However, 
for a more thorough analys is,  such as before 
encapsulation, it may be necessary to combine data from 
multiple instruments that are sensitive to different physical 
properties, in order to verify fuel parameters and 
correctness of declarations to the best possible accuracy 
and precision. Although potential measurement systems 
which could be used for safeguards measurements have 
been investigated previously [1], these investigations often 
focused on what information a single system can provide. 
This work aims at investigating how to combine different 
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measurements using machine learning to extract more 
information from the measurements. 

Due to the complex interplay between fuel usage in a reac-
tor and the fission product and minor actinide abundance, 
machine learning has been investigated in the past few 
years for interpreting the data in a systematic way, and to 
extract safeguards-relevant information. Machine learning 
has been applied to gamma spectroscopy data from spent 
nuclear fuel [2,3,4], and for predicting fuel parameters 
based on several types of measurements [5,6]. It has also 
been used for partial defect detection purposes in spent 
fuel [7,8,9], for process monitoring at reprocessing facilities 
[10] and to classify uranium oxide fuels and mixed uranium
oxide fuels [11].

This work builds upon the work of [5] and investigates the 
capability of a random forest (RF) regression model to pre-
dict CT, BU and IE for the complete modelled fuel invento-
ry of the Ringhals 3 and 4 PWR reactors in Sweden. The 
objective is to investigate if a RF regression model trained 
on SNF having a simplified irradiation history (as done in 
[5]) generalizes to a realistically modelled SNF inventory, 
representing a fuel inventory to be placed in a final reposi-
tory. In order for a regression model to be useful in safe-
guards, it must be able to reliably predict the CT, BU and 
IE for a real inventory.

The motivation behind investigating the impact of the irra-
diation history is that although the radionuclide composi-
tion of a SNF is predominantly coupled to the CT, BU and 
IE of the assembly, the irradiation history may also influ-
ence the fission product and minor actinide abundance 
[12,13]. For fuel assemblies with more than a few years CT, 
which is the topic of this work, the gamma emission is 
dominated by Cs134, Cs137 and Eu154 [12]. Due to its 
half-life of 30.2 years, which is typically longer than the 
time the fuel assembly is in the reactor, Cs137 is often con-
sidered to build up linearly with BU. However, for very long 
gaps in irradiation, on the order of decades, Cs137 created 
in the cycles before the gap will have had noticeable time 
to decay during the gap. Cs134 is created through neutron 
capture by the direct fission product Cs133, hence its pro-
duction depends strongly on the neutron flux in the reactor 
core, and thus the reactor power. Due to its shorter half-life 
of 2.1 years, even a one-year gap in irradiation will allow 
Cs134 produced in earlier cycles to decay noticeably. For 
Eu154, its production path is more complicated, and a fuel 
depletion calculation using the irradiation history is re-
quired for accurate results. With respect to neutron emis-
sion, the build-up of the principal neutron-emitting radio-
nuclides depends strongly on the total neutron fluence but 
is relatively insensitive to the power level. However, the rate 
of build-up is significantly affected by the initial U235 con-
tent and any gaps in the irradiation, though the effect is the 
most significant at short CTs [12].

2. Methodology

To investigate what effect the irradiation history has on 
the fuel parameter predictions when using RF regression 
models, the spent fuel inventories of the Ringhals 3 and 4 
PWR reactors were modelled. Section 2.1 explains how 
the spent fuel modelling was done, section 2.2 describes 
the non-destructive assay signatures considered, and 
section 2.3 provides an overview to the RF method that 
was used to predict the fuel parameters. 

Due to the optimized usage of the nuclear fuel at nuclear 
power plants, many fuel assemblies experience a similar 
irradiation history. The achievable discharge BU strongly 
depends on the IE, where an increasing IE enables a 
higher discharge BU, and possibly more cycles spent in 
the reactor. Modern fuel assemblies, i.e. those with a 
short CT, tend to have a higher IE compared to older 
ones, and thus a higher discharge BU [14]. Since a fully-
burned fuel inventory from a commercial nuclear power 
plant represents a limited set of combinations of CT, BU 
and IE values, it cannot be used to train a model that 
should be able to predict all practically achievable fuel 
parameter values. Furthermore, although the majority of 
fuel assemblies reach their intended terminal BU upon 
discharge, some assemblies are discharged earlier, and 
have values of CT, BU and IE that significantly differ from 
the majority of the other assemblies. A reliable and ro-
bust model should be able to predict the parameters also 
in such cases.

The RF regression models in this work were trained on 
the simulated spent fuel library of [15], which covers fuel 
assemblies with CTs between 0 and 70 years, BUs be-
tween 5 and 70 MWd/kgU, and IEs between 1.5% and 
6%. Different RF regression models were trained to pre-
dict CT, BU and IE. The performances of these models 
were evaluated on two different test data sets: one test 
data set from the same fuel library, with fuel assemblies 
having the same irradiation history as in the training data, 
and one data set comprising the modelled Ringhals fuel 
assemblies. By comparing the performance of the RF re-
gression models on these two test sets, it is possible to 
identify what uncertainties are due to the models them-
selves and assumptions underlying the fuel depletion cal-
culations, and what additional uncertainty is added in the 
predictions due to the irradiation history in the Ringhals 
case. The values of CT, BU and IE from the Ringhals fuel 
assemblies all fall within the ranges of the parameters in 
the fuel library used for training, hence the RF models are 
trained on data that covers all Ringhals combinations of 
CT, BU and IE. The regression and evaluation strategy 
used in this work is summarized in Figure 1.
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2.1 Spent fuel modelling

The spent fuel library of [15] contains in total 789 406 ura-
nium dioxide (UO2) fuel samples, and was created using 
Serpent2 [16]. In the creation of the library, a generic irra-
diation history was assumed. The fuel was simulated to 
experience a constant power level, and the desired BU 
was obtained by increasing the number of irradiation cy-
cles, and adjusting the length of the last irradiation cycle 
to obtain the desired burnup. The irradiation history in the 
library also assumed that after a period of 365 days of ir-
radiation, a 30-day cooling period followed. This approxi-
mately corresponds to the revision period at the Swedish 
nuclear power plants.  

For the Ringhals 3 and 4 fuel assemblies, the fuel assem-
bly information provided by the operator Vattenfall in-
cludes the IE, the start and end dates of each irradiation 
cycle, and the BU of each cycle. Using this data, the fuel 
depletion of each fuel assembly was simulated in 
ORIGEN [17], due to its efficiency since all assemblies 
had to be simulated individually. The result of the ORIGEN 
simulations is an estimate of the material composition 
and neutron emission of each SNF assembly. The radio-
nuclide content was then converted to a corresponding 
gamma-ray activity using the nuclide half-lives. For this 
work, it is assumed that the radionuclide gamma-ray ac-
tivities can be assessed from a gamma-spectroscopic 
measurement, hence that the RF regression models can 
be trained using the gamma-ray activities as input 
features.

The Ringhals data includes the complete SNF inventory 
of the two reactors from the start of the reactors in 
1980 and 1983 until the year 2012, and the fuel radio-
nuclide abundances were calculated to correspond to 
1st of July 2020. In this way, the modelled assemblies 
have a minimum of 8 years of cooling, enabling an in-
vestigation of the fuel parameter prediction capability 
for medium- and long-cooled fuel, which were shown in 
[5] to be more challenging than fuels with shorter CTs. 
Additionally, in the context of verification before encap-
sulation and final storage, many of the fuel assemblies 
are expected to have relatively long CT to ensure a suf-
ficiently low residual heat. The Ringhals 3 fuel assembly 
data set contains 1083 assemblies, and the Ringhals 4 
set contains 1109 assemblies, for a total set of 2192 as-
semblies. Due to the potentially sensitive nature of this 
data set, it cannot be published, and we focus on gen-
eral results and trends that may be of relevance to PWR 
reactors in general, while keeping the specifics at a 
minimum.

Investigating the Ringhals fuel assembly irradiation histo-
ries, a few general remarks can be made:

• The PWR fuel library assumes a constant power level, 
whereas most Ringhals fuel assemblies experienced a 
roughly 20-40% higher power level in the first one or two 
cycles, as compared to the remaining cycles. As a con-
sequence, we expect that for the Ringhals assemblies 
the modelled activity of short-lived radionuclides such as 
Cs134 is lower at discharge as compared to the fuel 

Figure 1: The training of the RF regression models was done using 80% of the fuel library of [15]. The remaining 20% was used to test 
the performance of the models and investigate what uncertainties are inherent due to the models and underlying assumptions. The 
trained model performance was also tested on the Ringhals fuel inventory, to assess the performance for fuel assemblies with real 
irradiation histories.
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library for the same CT, BU and IE values, since they 
were produced earlier in the Ringhals case and have had 
more time to decay before discharge.

• The majority of the Ringhals assemblies experienced a 
very regular irradiation, without spending cycles outside 
the reactor. However, a significant fraction of the 
Ringhals assemblies were reinserted into the reactor for 
a final low-power irradiation cycle, typically after having 
spent one or two cycles outside the reactor. For the as-
semblies that were part of the first core loading, the gap 
to the final cycle could be significantly longer, up to ten 
years, and the final cycle could be of comparatively high 
power. A smaller fraction of the fuel also had a gap in the 
irradiation after the first or second cycle. This is a notice-
able difference to the fuel library, which has no gaps in 
the irradiation, and this affects the abundance of short-
lived fission products at discharge.

• In some of the Ringhals assemblies, burnable absorbers 
were initially present. Such absorbers are not included in 
the PWR fuel library. Since the provided operator data 
on burnable absorbers is incomplete, and the absorbers 
mainly affects the beginning of the first cycle, they were 
not modelled. Note also that for depletion calculations, 
the neutron flux is set to yield the desired power level, 
which in part compensates for the effect of the burnable 
absorbers.

A summary of the CT, BU and IE of the Ringhals fuel as-
semblies is shown in Figure 2.

2.2 Non-destructive assay signals considered

This work considers several of the non-destructive assay 
signatures used in [5], such as the relative gamma-ray 
activity of selected abundant radionuclides, the total 
gamma-ray activity of the selected radionuclides, and the 
parameterised early differential die-away time τ. Since [5] 
found that the total Cherenkov light emission carries the 
same information as the total gamma-ray signature, we 
use only the total gamma-ray activity, since it does not 

require an additional measurement instrument. In addi-
tion, we include the total neutron emission rate of the fuel 
as a new signature, to investigate what impact it has on 
the model capability of predicting the fuel parameters.

Since the fuel assemblies considered here have a mini-
mum CT of eight years, and a maximum CT of almost 40 
years, the gamma-ray activity is predominantly caused by 
Cs134, Cs137 and Eu154, which therefore are the radio-
nuclides considered in this work. These radionuclides are 
all abundant in SNF and have a long enough half-life to 
be measurable after more than eight years. For the 
Ringhals assemblies, these three radionuclides account 
for more than 99% of the total gamma-ray activity, and 
other radionuclides can therefore be neglected with a 
minimal loss of accuracy.  For the relative gamma-ray ac-
tivity, the sum of these three gamma-emitting radionu-
clide activities were scaled to 1. This corresponds to a 
measurement where an absolute calibration has not been 
made, and only the relative intensities of the gamma-ray 
emissions can be determined. The total gamma activity is 
the sum of the three gamma-ray activities, and although it 
does not correspond to the absolute intensity for the fuel 
assembly, it is proportional to it. This in turn, enables a 
comparison of the total gamma-ray activities between 
fuel assemblies.

As in [5], a minimum threshold activity was included, at 
0.1 % of the lowest Cs137 activity in the training dataset. 
The activities of radionuclides below the threshold were 
set to 0. The value of 0.1% is arbitrary, but reflects the 
fact that radionuclides with low activities may fall below 
the threshold of detectability. Based on [5], it is expected 
that Cs134 (with half-life 2.1 years) is only measurable for 
a short while after eight years of cooling using this 
threshold, and Eu154 (with half-life 8.6 years) may be 
below the threshold for long-cooled, low-BU assemblies. 
Note however that the real threshold of a measurement 
depends on both the fuel assembly and the measurement 

Figure 2: The distribution of CT, BU and IE for the Ringhals 3 and 4 spent fuel assemblies. The colour of the markers indicates the 
cumulative number of years an assembly spent outside the reactor between consecutive irradiation cycles. The assembly age is the 
number of years since first irradiation.
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setup. S ince th is work does not cons ider the 
measurement setup at all, a global threshold is a simple 
way to include the main effect of a detectability limit on 
the subsequent analysis. For shorter CTs, additional 
radionuclides are expected to contribute and their activity 
will depend even more strongly on the power level of the 
final irradiation cycle and hence the irradiation history 
[12], but such investigations are outside the scope of this 
work, and such low-CT assemblies are not part of the 
Ringhals test set.

The total neutron emission rate of the Ringhals assem-
blies were provided by the ORIGEN simulations, which 
includes spontaneous fission and (α, n)-reactions. For the 
fuel database of [15] which was generated using Ser-
pent2, the total neutron emission rate is not provided. 
The SF neutron emission rate was instead calculated 
based on the abundance of fissile radionuclides and mi-
nor actinides, and neutron emission data for these radio-
nuclides from [12]. The (α, n) neutron contribution was 
calculated based on the abundance of fissile radionu-
clides and minor actinides and data from [18]. The total 
neutron emission rate was calculated as the sum of these 
two contributions. In general, for most Ringhals fuels the 
(α, n)-reactions contribute with about 1-5% of the total 
neutron rate, however for certain long-CT, low-BU as-
semblies the contribution could reach 20%. In the fuel li-
brary, the (α, n) contribution can exceed 50% for very 
low-BU and long-CT assemblies. 

Since the neutron emission rates were calculated using 
different methods for the two fuel sets, and since the 
burnup calculations and underlying cross-sections also 
differ, additional errors and uncertainties arise when 
comparing the two data sets. A thorough benchmark of 
the two methods is outside the scope of this paper, but 
eight Ringhals assemblies with varying irradiation histo-
ries were selected and depleted with the real irradiation 
history using Serpent. The results indicate that the Ser-
pent neutron emission rates were 2-12% higher than the 
ORIGEN emission rates, primarily due to a higher Cm244 
production, which may introduce a bias in the results. 
However, since the neutron emission rates from the 
Ringhals fuel assemblies span more than two orders of 
magnitude, the bias is expected to be modest in the RF 
regression models. 

To assay the fissile content of a SNF assembly, this work 
includes the signature from the DDSI instrument, which 
measures neutrons in coincidence to determine a so-
called early die-away time τ. This feature is sensitive to 
the fissile content, making it useful for IE determination 
using machine learning [5]. To predict the early die-away 
time for a large number of fuel assemblies, the parame-
terization function of [19] was used, using an updated set 
of fit coefficients valid for a larger range of fuel parame-
ters. For fuel assemblies with more than a few years 

cooling, the updated parameters give comparable results 
to the original parameters, thus either sets of parameters 
can be used. To verify the accuracy of the parameteriza-
tion function, MCNP simulations were run for eight se-
lected Ringhals fuel assemblies with irradiation histories 
that differ significantly from the one assumed in the pa-
rameterization function. The results show that the simu-
lated and the parameterized τ values are within 1.5% of 
each other, with the exception of one fuel assembly for 
which τ differs by almost 4%. Hence, we judge the pa-
rameterized τ values to be sufficiently accurate for the 
purpose of this work.

Each signature in the training set, the fuel library test set 
and the Ringhals test set had a 1% Gaussian noise add-
ed to it, to account for measurement uncertainty. It is 
noted in [5] that such a low uncertainty is not unfeasible 
for gamma spectroscopy or the DDSI signal τ, however 
the actual measurement uncertainties will depend on the 
selected measurement setup, which is not considered in 
this work. The effect of higher levels of noise is presented 
in section 3.4.

2.3 Random Forest Regression

The RF method [20] is a further development of the deci-
sion tree method, and can be used either for classification 
or regression, i.e. predicting the value of a continuous vari-
able. The RF method is a supervised learning algorithm, 
where the model is trained on known input-output pairs. 
The key improvement of RF over decision trees is that the 
RF predictor is made up of a number of trees, each being 
trained on a unique randomly sampled subset of the total 
training data. The output of the RF regression model is the 
mean value of the output of all decision trees. By using 
multiple trees, the RF method becomes less prone to 
overfitting compared to decision trees, where overfitting 
means a poor capability to generalize beyond the training 
data. The RF regression model implementation used in 
this work is the one from scikit-learn [21]. 

To control how the RF regression model is trained, two 
hyper-parameters were in [5] found to have an impact on 
the model performance. The first is the number of deci-
sion trees, and [5] notes that a wide range could be used 
with similar results. Here, we chose 250 trees as the de-
fault number if nothing else is specified. The second pa-
rameter is the number of features used in each node of 
the decision trees to make a decision about which leaf 
the input data belongs to. Again, [5] notes that several 
values give similar results, and this work use a default 
value of 3 in the analysis. This is large enough to be with-
in the previously found minima, and additionally the mod-
els trained in this work always contains at least three in-
put features.

Three data sets are typically used in machine learning re-
gression: a training set, a validation set, and a testing set. 
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The training set is used to provide known input-output 
pairs to train the model, where the input here is some 
combination of the gamma-ray activities, the neutron 
emission rate and τ, and the output is the predicted val-
ues of CT, BU and IE. The validation set is used to tune 
the performance of the model when using different hy-
per-parameters. The testing set is used to assess the 
performance of the trained model on new data. Since it 
was found in [5] that the hyper-parameter optimum is 
rather broad, tuning the model using the validation set 
was omitted in this work. However, this work instead 
considers two test sets: one test set comprising data 
from the same fuel library used to train the model, and 
another test set comprising the modelled Ringhals fuels. 
These two test sets are used to assess what uncertain-
ties arise from the RF regression model itself and as-
sumptions made in the depletion calculations, and what 
additional uncertainty is introduced by the actual irradia-
tion history introduced in the Ringhals test set. The train-
ing set consists of 631 525 unique samples from the fuel 
library, the fuel library test set consists of the remaining 
157 881 fuel library samples, and the Ringhals test set 
consists of the 2192 samples from both reactors.

As was done in [5], all input features in the training set 
were rescaled to have a mean value of 0 and a variance 
of 1 before the analysis. The same scaling was applied to 
the training set and both test sets, to ensure that all val-
ues after rescaling were directly comparable to each oth-
er. Since the fuel library and the modelled Ringhals as-
semblies were modelled using different depletion codes, 
the ORIGEN data for the Ringhals assemblies were con-
verted from emissions per ton uranium to emissions per 
cm3 to match the Serpent data in the fuel library, before 
the standard scaler was applied.

3. Results 

In this section we present prediction results for the two test 
sets. For a given set of input signatures, three RF regres-
sion models were trained: one for predicting CT, one for BU 
and one for IE. Each model used the same training data 
and hyper-parameters. Following the work of [5], we first 

considered different combinations of gamma-ray signa-
tures, and then added neutron signatures to the analysis.

3.1 Analysis using gamma-ray signatures

RF regression models were trained to predict IE, BU and 
CT for two scenarios: i) using the relative gamma-ray ac-
tivities of Cs134, Cs137 and Eu154 as input, and ii) using 
in addition the total gamma-ray activity as input.

Table 1 reports the average and root mean square error 
(RMSE) of the difference between the predicted and true 
values of the CT, BU, and IE for the two test sets. The av-
erage difference (or error) indicates if there is a systemat-
ic bias in the predictions and reflects the accuracy of the 
models. The RMSE provides an indication of the preci-
sion. Figure 3 shows the predicted parameter values ver-
sus the true values for scenario ii). The marker colour 
shows the cumulative outage time between consecutive 
irradiation cycles, to highlight assemblies that spent cy-
cles outside the reactor before reinsertion. Figure 3 also 
shows a histogram of the errors in the predicted CT, BU 
and IE for the fuel library test set and the Ringhals test 
set. 

The overall results in Table 1 match those found in [5]. 
Using only the relative activities of the selected radionu-
clides, CT can be predicted with good accuracy and pre-
cision. However, fuel assemblies with a gap in their irradi-
ation history are systematically over-predicted, as shown 
in Figure 3. Table 1 also shows that the RMSE for the CT 
prediction of the fuel library test set is higher than the 
RMSE for the Ringhals test set, which can also be seen 
in the histogram in Figure 3. The cause is that the training 
data includes low-BU high-CT fuels, where both the 
Cs134 and Eu154 activities are below the detectability 
threshold, and only Cs137 remains. Almost all Ringhals 
assemblies have reached a high BU at discharge, and 
are more likely to include these two radionuclides with 
activities above the detection threshold. There are how-
ever some long-CT, high-BU assemblies in the Ringhals 
test set, which are under-predicted, as shown in the CT 
plot in Figure 3.

The large bias and RMSE in the BU reported in Table 1 
reveal that the BU of the Ringhals assemblies cannot be 

Features Data set CT [days] BU [MWd/kgU] IE [w%]
Avg. error RMSE Avg. error RMSE Avg. error RMSE 

Relative radio- nuclide activities Fuel library 3.3 2159 0.03 12.4 0.03 1.2

Ringhals 425 608 8.88 12.1 0.35 1.13

Relative radio- nuclide activities 
and total gamma

Fuel library 1.2 683 0.001 0.90 0.001 0.92

Ringhals 227 448 0.66 1.39 0.42 0.94

Table 1.Average error and RMSE in the fuel predictions for the fuel library test set and the Ringhals test set, with different input features 
considered in the analysis. The uncertainties in the values due to randomness in the training of the regression models is around 1% of 
each value. 
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predicted by only considering relative gamma-ray activi-
ties. When the total gamma feature is included, this bias 
and spread is largely eliminated. The BU plot in Figure 3 
shows that some assemblies are under-predicted by 
around 2-4 MWd/kgU, and these are the ones with a sig-
nificant gap in their irradiation history. This group of fuels 
also causes the skewed error distribution seen in the er-
ror histogram plot. 

Finally, the IE predictions fail since none of the gamma-
ray activities depend strongly on it. Additional input fea-
tures are needed to predict IE, such as neutron-based 
features, described in the next section.

3.2 Analysis using gamma-ray and neutron 
signatures

Two different neutron signatures were considered: the 
gross total neutron emission rate and the parameterized 
early die-away time τ from the DDSI instrument. RF re-
gression models were trained for two sets of input fea-
tures: i) using relative radionuclide gamma-ray activities, 

the total gamma-ray activity and total neutron rate, and ii) 
using in addition τ.

Table 2 shows the average error and the RMSE for the 
predictions of CT, BU and IE as a function of input fea-
tures for the two test data sets. Figure 4 shows plots of 
the predicted and true parameter values. The colour of 
the markers shows the cumulative outage time in be-
tween irradiation cycles. Figure 4 also shows histograms 
of the errors in the predictions. 

As can be seen when comparing Table 1 and Table 2, in-
cluding the total neutron emission rate as an input feature 
improves the CT prediction slightly, the BU prediction re-
mains unchanged, and the IE prediction is significantly 
improved. For the fuel library test set, the IE predictions 
are not significantly improved by adding τ when the total 
neutron emission rate is available. However for the 
Ringhals test set the precision of the IE predictions are 
noticeably improved by adding τ, although the accuracy 
is somewhat worsened due to adding a systematic devia-
tion in the predictions. Hence, for the more realistic 

Figure 3. Performance of the RF regression models trained on the relative activities of selected radionuclides, and the total gamma-ray 
activity. Top row: the true and predicted values of CT (left), BU (centre) and IE (right), for the models. The red line is a guide for the eye, 
indicating where the regression matches the real values. The colour of the markers shows the cumulative number of years of cooling 
between consecutive irradiation cycles. Bottom row: Histograms of the errors in predictions of CT (left), BU (centre) and IE (right). The 
training errors were calculated based on the fuel library test set (labelled “Library”), and the Ringhals test set (labelled “Ringhals”).
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Ringhals test set, τ provides valuable information useful 
in determining IE. 

The plots in Figure 4 show that the bias in the predicted 
CT for long-cooled Ringhals fuel assemblies, caused by a 
lack of data at long CT, is removed when additional input 
features are used. However, the over-prediction of CT 
and under-prediction of BU for Ringhals assemblies hav-
ing a gap in their irradiation history remain. This group of 
assemblies also causes the error histogram plots in Fig-
ure 4 to be skewed, where a symmetric distribution 
would be expected if the errors were random. Additional-
ly, Table 2 shows that the RMSE values for the predic-
tions of the Ringhals test set tend to be a factor 2-5 high-
er compared to the predictions of the fuel library test set, 
and this additional uncertainty is also introduced by the 
irradiation history. Furthermore, the histograms in Figure 
4 show that the most likely error in CT is around 1 year, 
and the most likely error in BU is around 1.5 MWd/kgU. 
This bias is caused by the differing irradiation histories, 
and that the final low-power cycles in the Ringhals case 
resulted in a different abundance of radionuclides at dis-
charge, as compared to a fuel assembly from the library 
with identical values of CT, BU and IE. Hence, the irradia-
tion history introduces both a bias and an uncertainty in 
the predictions, when the models are trained on a simpli-
fied irradiation history.

3.3 Hyper-parameter selection considerations

Since there are differences in irradiation history as well as 
in the software used to produce the data sets, it must be 
verified that the RF regression models are not fitting to 
features in the training data set that do not generalize to 
the Ringhals test set. Such a lack of generalization could 
be due to the choice of hyper-parameters. For the hyper-
parameter study, we used all six features (three relative 
radionuclide activities, their total gamma-ray activity, total 
neutron emission rate and τ) to predict the fuel assembly 
parameters. The two hyper-parameters that were investi-
gated here were the number of decision trees used by 

the RF regression models and the number of features 
used in each node to make the decision. The default val-
ues used in the previous section was 250 trees per RF, 
and splitting on three features. 

For the number of trees, values in the range 50 to 300 in 
steps of 50 were evaluated. The results show that just as 
in [5], changing the number of trees has little impact on 
the performance of the RF regression models. Consider-
ing the uncertainty introduced by the randomness in the 
data sampling, different values of the hyper-parameters 
do not result in significant differences in fuel parameter 
prediction capability.

For the number of features used to split each node in the 
decision tree, values between 1 and 6 were evaluated. 
For BU and IE, the results are again similar to [5], with lit-
tle change in performance as a function of the number of 
features. For CT however, the results improves slightly for 
the fuel library test set with increasing number of fea-
tures, but the corresponding per formance for the 
Ringhals test set is a worsened performance with an in-
creasing number of features. This suggests that the RF 
regression model predicting CT may be fitting to struc-
tures in the fuel library that do not generalize to the 
Ringhals test set, and that splitting using fewer features 
may be preferred. However this needs to be verified us-
ing other test sets before the choice of splitting on one 
feature can be selected as default.

3.4 Noise considerations

In the previous analysis, a default 1% Gaussian noise was 
added to all input features in both the training and two 
test sets, to include the effect of counting statistics and 
measurement uncertainties. However, depending on the 
measurement situation, the level of noise may vary. To in-
vestigate the impact of also other levels of noise, RF 
models were trained and then tested when 1%, 5% and 
10% noise was applied to all data, with all features used 
for training. The results are shown in Table 3. 

Features Data set CT [days] BU [MWd/kgU] IE [w%]
Avg. error RMSE Avg. error RMSE Avg. error RMSE 

Relative radio-nuclide 
activities, total gam-
ma and total neutron

Fuel Library -0.18 157 0.001 0.53 0.001 0.12

Ringhals 271 380 0.74 1.40 0.05 0.23

Relative radio-nuclide 
activities, total gam-
ma, total neutron and 
τ

Fuel Library 0.16 79 0.001 0.52 0.001 0.11

Ringhals 270 378 0.72 1.33 0.08 0.16

Table 2.  Average error and RMSE in the fuel predictions for the fuel library test set and the Ringhals test set, with different input features 
considered in the analysis. The uncertainty in the values due to randomness in the training of the regression models is around 1% of each value.
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Overall, the behaviour of the fuel library test set with in-
creasing levels of noise is similar to [5], where the aver-
age error changes little, and the RMSE increases with in-
creasing noise. For the Ringhals test set, the RMSE 
values are higher at lower noise, but the increase as a 
function of noise is similar to the fuel library test set. 
Thus, the noise appear to have comparable effects to the 
precision of the predictions for both test sets. For the 
Ringhals test set, the average error however increases 
somewhat with noise. In general, as in [5], the CT predic-
tion is not too sensitive to increased noise, the BU pre-
diction is a bit more sensitive but is manageable also at 
higher noise levels, but the IE predictions are highly sen-
sitive to the addition of noise. Hence for accurate fuel pa-
rameter predictions, effort should be made to have a 
well-characterized and low-noise DDSI measurement, or 
a total neutron emission measurement if the DDSI is not 
used. 

4. Conclusions

In this work, we have trained RF regression models to 
predict the fuel parameters CT, BU and IE of modelled 
PWR fuel assemblies, based on non-destructive data 
that could be obtained through gamma and neutron 
measurements. The models were trained on modelled 
PWR assemblies from a fuel library with a wide range of 
CT, BU and IE values, which was created assuming a 
standardized, simplified irradiation history. The RF re-
gression models were tested on both data from this li-
brary, as well as modelled PWR fuels from the Swedish 
commercial nuclear power reactors Ringhals 3 and 4, to 
investigate what impact a realistic fuel irradiation history 
has on the prediction capabilities of RF regression mod-
els. In the analyses, input features corresponding to rela-
tive radionuclide activities, total gamma-ray activity, total 
neutron emission rate and the parametrised early die-
away time τ from the DDSI instrument were considered.

Based on the results, a gamma-spectroscopic measure-
ment should be sufficient to allow a RF regression model 

Figure 4. Performance of the RF regression models trained on the relative activities of selected radionuclides, the total gamma-ray 
activity, the total neutron emission rate and τ. Top row: the true and predicted values of CT (left), BU (centre) and IE (right), for the models. 
The red line is a guide for the eye, indicating where the regression matches the real values. The colour of the markers shows the 
cumulative number of years of cooling in between irradiation cycles. Bottom row: Histograms of the errors in predictions of CT (left), BU 
(centre) and IE (right). The training errors were calculated based on the fuel library test set (labelled “Library”), and the Ringhals test set 
(labelled “Ringhals”).
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to predict CT well, and a well-calibrated setup that also 
provides enough information to allow a comparison be-
tween fuel assemblies of the absolute total gamma-ray 
activity will improve the results further. For a good BU 
prediction, both the relative radionuclide activities and the 
total gamma-ray activity are required, whereas the total 
neutron emission rate signature can be added to slightly 
improve the predictions. For the IE predictions, τ is the 
input feature considered of highest importance, since it is 
the only one which probes the fissile content, and hence 
IE. While the total neutron was sufficient for IE predictions 
of the fuel library test set, the more realistic Ringhals test 
set showed that τ provides more information as com-
pared to the total neutron feature. Using the total neutron 
emission rate instead of τ worsens the results, since the 
RMSE of the predictions increase. This is because the 
abundance of neutron-emitting radionuclides does not 
only depend on the IE but also on the irradiation history, 
which differs for the training and Ringhals test set. 

Due to the differences in irradiation history, the simulated 
Ringhals fuel assemblies have comparatively lower abun-
dance of radionuclides such as Cs134 at discharge, 
compared to fuel assemblies from the fuel library with 
equivalent values of CT, BU and IE. As a consequence, 
the RF regression models systematically overestimate CT 
and underestimate BU for the Ringhals assemblies. How-
ever, the systematic deviation is rather modest, typically 
around 2-5% of the values. Fuel assemblies that were 
outside the reactor for some time before a final low-pow-
er cycle are in general predicted to have a CT that is 1-3 
years too long, even if the time spent outside the reactor 
before the final irradiation cycle could be up to ten years. 
Overall, the predicted fuel parameter values are rather 
similar to the true values and may therefore be of use to a 
safeguards inspector despite the fact that fuel irradiation 
histories may differ from what is assumed in the predic-
tions. As in the previous work, the choice of hyper-pa-
rameters has a negligible impact on the performance of 
the predictions, though the CT predictions do seem to 
benefit from choosing a low number of features to split 
nodes on.

Noise level Data set CT [days] BU [MWd/kgU] IE [w%]

Avg. error RMSE Avg. error RMSE Avg. error RMSE 

1% Fuel Library 0.16 79 0.001 0.52 0.001 0.11

Ringhals 270 378 0.72 1.33 0.08 0.16

5% Fuel Library -0.56 298 -0.001 1.94 0.001 0.36

Ringhals 311 442 1.40 2.36 0.17 0.39

10% Fuel Library -1.32 509 -0.002 3.16 0.001 0.59

Ringhals 359 541 2.04 3.84 0.30 0.66

Table 3. Average error and RMSE in the fuel predictions for the fuel library test set and the Ringhals test set, with different input features 
considered in the analysis. The uncertainty in the values due to randomness in the training of the regression models is around 1% of each 
value
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