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Abstract: 
Nuclear research articles can provide information 
about early nuclear proliferation indicators such 
as influential research entities and technology 
capability levels of a country, but detection of 
nuclear activities typically occurs after they have 
started. We investigate the extent to which 
nuclear research articles can be used to infer 
whether a research entity will acquire or develop 
a nuclear technology before it happens. Early 
detection of nuclear proliferation or technology 
development indicators from data is challenging 
due to partial observability, sparse and unlabeled 
information, and confounding signals from 
multiple concurrent activities. This paper 
presents the early detection problem as a 
sequential decision-making, goal inference 
problem, where the objective is to characterize 
and predict an individual’s, organization’s, or a 
country’s intent (unobserved goal-directed 
behavior) towards developing a nuclear capability 
from partially observed sequences of their 
research publications, using inverse 
reinforcement learning and Bayesian goal 
inference methods. A computational framework 
is presented, and its application demonstrated 
using 29,196 Scopus records for a case study 
related to a civil nuclear capability. The case 
study results serve as a proof-of-concept 
demonstration for inference of technology-
directed research activity of authors who publish 
in the nuclear domain. The inference method, 
combined with advanced computing, may be 
used to assess and monitor activities pertaining 
to early developmental stages of a nuclear 
technology or capability, which in turn can help 
to identify and prioritize activities with nuclear 
proliferation potential for further investigation.  

Keywords: Nuclear, Reinforcement, Learning, 
Bayesian, Inference, AI 

1. Introduction
The goal of nuclear proliferation detection is to 
deter state and non-state actors from pursuing 
the development and acquisition of nuclear 

weapons. Traditional methods for nuclear 
proliferation detection focus on detecting 
proliferation indicators such as chemical 
signatures and activities associated with the 
acquisition and production of special nuclear 
materials (Sheffield, 2020). Advanced data-
driven methods are required to enable detection 
of proliferation indicators that are not only 
associated with special nuclear materials but also 
with the research, development and acquisition 
of specialized equipment, and technical expertise 
needed for building a nuclear weapon (Sheffield, 
2020; Alexander et al., 2020). Such methods 
may also enable the detection of undeclared 
nuclear materials and activities from technical 
sources of information that are relevant for IAEA 
safeguards (Barletta et al., 2014; Carlson et al., 
2006; Cojazzi et al., 2013; Ferguson and 
Norman, 2010; Pabian et al., 2014). 

Recent advancements in computing, data 
science, and artificial intelligence / machine 
learning (AI/ML) technologies might offer 
opportunities for enhancing current data-driven 
detection methods to characterize and detect 
nuclear proliferation indicators at earlier stages of 
material production or nuclear weapon 
development (Sheffield, 2020). For example, 
scientific publications and networks (e.g., 
coauthorship, citation networks) have been 
analyzed using machine learning and natural 
language processing (NLP) techniques to identify 
early potential proliferation indicators such as 
influential entities in a research topic (Chatterjee 
et al., 2023), or the level of an entity’s nuclear 
expertise and technology capability (Kas et al., 
2012). Here, an entity can be a person, 
organization, city, state, or a country. Early 
detection of nuclear proliferation indicators from 
data is however challenging due to partial 
observability, sparse and unlabeled information, 
confounding signals from multiple concurrent 
activities, and difficulty in differentiating between 
peaceful and detrimental nuclear activities.  

Nuclear research articles may provide valuable 
insights into an entity’s intent (unobserved goal-
directed behavior) to develop or acquire nuclear 
expertise and technology. Technical documents 
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and publications contain information to 
characterize and detect potential early 
proliferation indicators such as influential 
researchers, author collaborative patterns, 
nuclear expertise levels, and technology 
capabilities (Chatterjee et al., 2023; Kas et al., 
2012). Recently, Chatterjee et al. (2023) 
performed a case study with author collaboration 
networks that were constructed using text (titles, 
abstract) and metadata of 33,517 Scopus 
records of nuclear research articles published 
from 2000 to 2019. They applied topic modeling 
and topic-aware influence maximization 
algorithms to identify authors who are the most 
influential in diffusing information about a 
selected topic mixture through collaboration 
networks. They also analyzed the collaboration 
dynamics of the influential authors over time, 
such as their ability to maintain old and to start 
new collaborations. Information about author 
influence and their collaborative patterns or 
behavior may be used to assess advancements 
in technological capabilities and expertise by key 
players (at the individual, organization, city, state, 
or country level) in a nuclear research area. Kas 
et al. (2012) used author affiliation information 
from 20,000+ nuclear physics articles in arXiv to 
extract coauthorship networks and to identify key 
players (authors, countries) based on network 
centrality measures. They also used text mining 
tools to extract information about nuclear 
processes from full-text contents of the articles 
for assessing the nuclear expertise level of 
countries. These studies indicate that scientific 
publications are useful for identifying key players 
and for assessing their nuclear expertise and 
technological capability levels, which in turn can 
help with early proliferation detection. 

Instead of assessing the nuclear expertise or 
technology capability levels of an entity, we take 
the problem of early detection a step further to 
predict whether a research entity will attain a 
nuclear expertise or technological capability by 
observing their temporal sequences of past 
activities. Drawing inspiration from the literature 
on inference of driver route behavior and 
destinations from partial trip trajectories (Krumm 
and Horvitz, 2006; Snoswell et al., 2020; Xue et 
al., 2015; Ziebart et al., 2008), we develop a 
novel computational framework based on topic 
modeling, inverse reinforcement learning (Adams 
et al., 2022; Arora and Doshi, 2021; Ng and 
Russell, 2000) and Bayesian goal inference 
methods to predict the technology-directed 
publication behavior (intent) of authors from 
partial trajectories of their publication sequences 
in time. To our knowledge, this work represents 
the first attempt at using research articles and 

reinforcement learning framework to formulate 
and solve a sequential decision-making problem 
for modeling and predicting author behavior 
towards developing a technology or performing 
a research activity in a nuclear technology area. 

The remainder of this paper is organized as 
follows. First, we briefly describe the 
reinforcement learning (RL) and inverse RL 
frameworks, followed by the problem of Bayesian 
goal inference from partial trajectories 
(sequences) of state transitions. Next, we 
formulate the sequential decision-making 
problem for technology-directed goal inference 
and present a case study for the approach. We 
then describe the approach and present the 
results of the case study.  Finally, we discuss the 
performance aspects of the method and future 
research directions for technology-directed goal 
activity inference. 

2. Background

2.1. Reinforcement learning 

In the basic RL framework, a goal-seeking and 
domain-aware agent interacts with an external 
environment by performing various actions and 
learning what actions to take at each step to 
achieve a goal (Sutton and Barto 2018). An 
action performed by the agent causes a change 
in the internal and external environment (state) of 
the agent, and the environment in turn responds 
to the change by giving the agent a 
reward/penalty for taking the action. The agent 
learns to choose actions in such a way to 
maximize the total rewards accumulated along a 
sequence of state ( 𝑠𝑠 )-action( 𝑎𝑎 )-state( 𝑠𝑠′ ) 
transitions that lead to the goal state from any 
starting state. For example, let’s consider a 
simple RL problem with a 5 x 5 grid world 
environment, as shown in Fig. 1. Each grid cell 
can be considered a state and an agent can 
move from one state to a neighboring state by 
choosing one of four actions: left, right, up, 
down. Given a destination cell (goal state), the RL 
agent must learn to take the most optimal 
sequence of transitions from any starting cell 
location (starting state) to the destination cell. Fig. 
1 shows one such sequence from state 𝑆𝑆1  to 
state 𝑆𝑆25. 

When the agent is in a state 𝑠𝑠, it must decide 
which action 𝑎𝑎 to choose and to which state 𝑠𝑠′ it 
should move to. This decision-making process 
depends on a Monte Carlo probabilistic criterion 
that uses two types of information: a transition 
probability and a reward for the (𝑠𝑠,𝑎𝑎, 𝑠𝑠′) 
transition. In most RL problems, the sequence of 
(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) transitions is modeled as a first order 
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Markov decision process (MDP). That is, to 
choose the next action and the next state in a 
first order MDP, the agent in state 𝑠𝑠, does not 
need to have information about the path that it 
took to state 𝑠𝑠. A MDP can be finite or infinite, 
deterministic or stochastic. A finite MDP has a 
finite number of states like the grid world example 
in Fig. 1, which has 25 states. An infinite MDP 
has infinite number of states, i.e. the state space 
is continuous. 

 

To solve a finite MDP problem in the RL 
framework, we must specify five inputs: state 
space, action space, transition probabilities, 
reward functions, and a discount factor for 
calculating the discounted sum of rewards along 
a sequence. Thus, a finite MDP is typically 
denoted as a tuple (𝑆𝑆,𝐴𝐴,𝑇𝑇,𝑅𝑅, 𝛾𝛾), where the state 
space, denoted as 𝑆𝑆 = {𝑆𝑆𝑖𝑖|𝑖𝑖 = 1, … ,𝑁𝑁}, is a finite 
set of 𝑁𝑁  states; the action space, denoted as 
𝐴𝐴 = �𝐴𝐴𝑗𝑗|𝑗𝑗 = 1, … ,𝑀𝑀�, is a finite set of 𝑀𝑀 actions; 
𝑇𝑇  is the state-action-state transition probability 
matrix of size 𝑁𝑁 × 𝑀𝑀 × 𝑁𝑁 , 𝑅𝑅  is the reward 
function, and 𝛾𝛾 ∈ (0,1)  is the discount factor. 
Given these inputs, the RL agent computes a 
reward-based policy by which it determines an 
optimal sequence of state-action-state 
transitions from any starting state to the goal 
state. The policy is the probability of choosing an 
action 𝑎𝑎 and the next state 𝑠𝑠’, given the agent is 
in state 𝑠𝑠; which, in turn is a function of the state-
action-state transition probabilities and the 
rewards. The optimal sequence is the sequence 
that would give the highest discounted sum of 
rewards from the starting state to the goal state. 
Various methods such as value iteration, policy 
iteration, Q-learning, Sarsa, have been 
developed to solve an RL problem (Sutton and 
Barto, 2018). 

The reward function captures the goal-directed 
behavior of the agent. Reward functions must be 
designed specifically for the goal state of interest 
and in many cases have non-trivial structures. 
The reward along each transition is defined either 
independently or as functions (linear or non-
linear) of state, state-action, and/or state-action-
state features. The state-based reward, denoted 
as 𝑅𝑅1(𝑠𝑠),  is the reward for moving to state 𝑠𝑠 ∈ 𝑆𝑆 
from any state. The state-action reward, denoted 
as 𝑅𝑅2(𝑠𝑠,𝑎𝑎), is the reward for taking action 𝑎𝑎 ∈ 𝐴𝐴 
in state 𝑠𝑠 . The state-action-state reward, 
denoted as 𝑅𝑅3(𝑠𝑠,𝑎𝑎, 𝑠𝑠′), is the reward for moving 
to state 𝑠𝑠′ ∈ 𝑆𝑆 from state 𝑠𝑠 through action 𝑎𝑎. For 
example, let’s consider a sequence, 𝜏𝜏 , of 𝐿𝐿 
state-action-state transitions, as ( (𝑠𝑠1,𝑎𝑎1, 𝑠𝑠2) , 
(𝑠𝑠2,𝑎𝑎2, 𝑠𝑠3), …, (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1), …, (𝑠𝑠𝐿𝐿, none, none)), 
where 𝑠𝑠1  is the starting state and 𝑠𝑠𝐿𝐿  is the 
terminal (goal) state. The general formula for 
calculating the discounted sum of rewards for the 
sequence, 𝑅𝑅(𝜏𝜏), based on any combination of 
𝑅𝑅1(𝑠𝑠),  𝑅𝑅2(𝑠𝑠,𝑎𝑎),  and 𝑅𝑅3(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) rewards, can be 
written as (Snoswell et al., 2020): 

𝑅𝑅(𝜏𝜏) = �𝛾𝛾𝑡𝑡−1𝑅𝑅1(𝑠𝑠𝑡𝑡)
𝐿𝐿

𝑡𝑡=1

+ �𝛾𝛾𝑡𝑡−1[𝑅𝑅2(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
𝐿𝐿−1

𝑡𝑡=1
+ 𝑅𝑅3(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1)].                   (1) 

When 𝛾𝛾  is close to zero, the agent makes 
decisions by giving more importance to acquiring 
immediate rewards than future rewards. When 𝛾𝛾 
is close to 1, the agent makes decisions by giving 
more importance to acquiring future rewards 
than immediate rewards.  

A deterministic MDP is one where only one state 
is accessible when an action is performed, 
whereas in a stochastic MDP, two or more states 
may be accessible. The deterministic and 
stochastic MDP dynamics are modeled using the 
transition probability. If 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)  represent the 
transition probability from state 𝑆𝑆𝑖𝑖  to state 𝑆𝑆𝑘𝑘 
through action 𝐴𝐴𝑗𝑗, then by definition, 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈
[0,1]  and ∑ 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1𝑁𝑁

𝑘𝑘=1 . For deterministic 
dynamics, 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1  for 𝑘𝑘 = 𝑘𝑘∗ , where 𝑘𝑘∗ ∈
{1, … ,𝑁𝑁}  and 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 0  for 𝑘𝑘 ≠ 𝑘𝑘∗ . For 
example, the grid world environment in Fig. 1 is a 
finite MDP with 25 states and 4 actions: 𝑆𝑆 =
{𝑆𝑆𝑖𝑖|𝑖𝑖 = 1, … ,25} and 𝐴𝐴 = �𝐴𝐴𝑗𝑗�𝑗𝑗 = 1, . . ,4�, where, 
we denote the actions, left, right, up, down as 
𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4 , respectively  In the grid world 
example (Fig. 1), when the agent in 𝑆𝑆8  moves 
right, it can access only state 𝑆𝑆9 if 𝑇𝑇(8,2,9)  =  1 
and 𝑇𝑇(8,2, 𝑘𝑘)  =  0  for 𝑘𝑘 ≠ 9 . For stochastic 
dynamics, 𝑇𝑇(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) < 1 ∀ 𝑘𝑘 ∈ {1, … ,𝑁𝑁} . For 
example, if 𝑇𝑇(8,2,3)  =  0.1 , 𝑇𝑇(8,2,7)  =  0.2 , 

Figure 1. A 5 x 5 grid world environment with 25 
states and 4 actions (left, right, up, down), illustrating 
a full sequence of state-action-state transitions 
(yellow-shaded cells) taken by a RL agent from state 
𝑆𝑆1 to goal state 𝑆𝑆25. The dotted arrows from state 𝑆𝑆8 
indicate the actions that were not chosen by the 
agent along the path from 𝑆𝑆1 to 𝑆𝑆25. The black-
shaded cells indicate inaccessible states. 
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𝑇𝑇(8,2,9)  =  0.6, and 𝑇𝑇(8,2,13)  =  0.1, the agent 
can move to any of the four neighboring states, 
𝑆𝑆3 , 𝑆𝑆7 , 𝑆𝑆9  or 𝑆𝑆13 , in a Monte Carlo step. For 
deterministic MDPs, the RL agent will follow the 
same optimal sequence or path from a starting 
state to the goal state. In a stochastic MDP, the 
agent is allowed to take sub-optimal paths to the 
goal state. 

2.2. Inverse reinforcement learning 

In the inverse RL (IRL) problem, one can observe 
a partial sequence of state-action-state 
transitions of an agent, not knowing the agent’s 
intended goal state and the structure of the 
reward function. The objective of an IRL 
algorithm is therefore to compute the rewards for 
a selected goal state from historically observed 
expert trajectories (Adams et al., 2022; Arora and 
Doshi, 2021; Ng and Russell, 2000; 
Ramachandran and Amir, 2007), and then to use 
these rewards to infer the probability that a future 
agent will pursue the same goal state given its 
partially observed path. Therefore, the inputs to 
the IRL problem are the state space, action 
space, transition probabilities, and the goal-
specified expert trajectories. An IRL algorithm 
computes the rewards by predicting and 
matching the state, state-action, or state-action-
state feature expectations observed in the expert 
trajectories. If the reward function is known, the 
intended goal state can be inferred from a given 
partial trajectory using Bayesian formulations 
(Snoswell et al., 2020, Ziebart et al., 2008). 

2.3. Bayesian goal inference from a partial 
trajectory of states 

The problem of Bayesian goal inference is to 
predict the probability that an agent will reach a 
destination state in a MDP environment, given a 
partial trajectory of states. Given a partial path 
from state 𝐴𝐴  to state 𝐵𝐵 , denoted as 𝜏𝜏𝐴𝐴:𝐵𝐵 , the 
probability of reaching a goal state 𝐺𝐺 is given by 
the Bayes formula: 

 

𝑃𝑃(𝐺𝐺|𝜏𝜏𝐴𝐴:𝐵𝐵) =  
𝑃𝑃(𝜏𝜏𝐴𝐴:𝐵𝐵|𝐺𝐺) ∙ 𝑃𝑃(𝐺𝐺)

𝑃𝑃(𝜏𝜏𝐴𝐴:𝐵𝐵)

∝
𝑃𝑃(𝐵𝐵 → 𝐺𝐺)
𝑃𝑃(𝐴𝐴 → 𝐺𝐺) ∙ 𝑃𝑃

(𝐺𝐺|𝐴𝐴),             (2) 

 

Here, 𝑃𝑃(𝐺𝐺|𝐴𝐴) is the prior probability of reaching 
goal state 𝐺𝐺 along all observed paths from 𝐴𝐴 in 
the set of expert trajectories; 𝑃𝑃(𝐴𝐴 → 𝐺𝐺)  and 
𝑃𝑃(𝐵𝐵 → 𝐺𝐺) are the probabilities of reaching goal 
state 𝐺𝐺  along all possible paths from states 𝐴𝐴 
and 𝐵𝐵, respectively. 

Most approaches for route preference and driver 
destination prediction use historical trip 
trajectories and Bayes rule to compute the 
probability that a location is the destination while 
a trip is in progression (Krumm and Horvitz, 
2006, Snoswell et al., 2020, Xue et al., 2015, 
Ziebart et al., 2008). The first step in all these 
approaches is to segment the trips and map 
them on a 2-dimensional grid representation of 
the geographical area where the trips were 
observed. These methods differ in the way the 
likelihood and prior probabilities are computed. 

Ziebart et al. (2008) developed an IRL algorithm 
based on maximum entropy (MaxEnt) principles 
to model driver behavior for route preference and 
destination prediction. The inverse RL algorithm 
solves for the unknown rewards to match the 
observed feature expectations of states, state-
action pairs, or state-action-state triples in the 
expert trajectories. The prior destination and 
probabilities of the likelihood function are then 
calculated based on the state-action-state 
transition probabilities and IRL rewards. 
Specifically, the probability from a state, e.g., 
state 𝐴𝐴, to a goal state 𝐺𝐺 is computed using the 
product of transition probability and an 
exponential function of the reward along each 
state-action-state transition and summing the 
products over the transitions in all possible paths 
from state 𝐴𝐴  to 𝐺𝐺 . The prior probabilities are 
computed in the same way but only over all 
previously observed paths of drivers from state 𝐴𝐴 
to 𝐺𝐺. 

For example, consider the partial sequence of 
transitions taken by a RL agent from state 𝑆𝑆1 to 
state 𝑆𝑆8  in the 5 x 5 grid world environment, 
shown in Fig. 2. We want to determine which of 
the three goal states, 𝑆𝑆21 , 𝑆𝑆23 , and 𝑆𝑆24 , is the 
agent pursuing. To solve this in the IRL-Bayesian 

Figure 2. A 5 x 5 grid world environment illustrating a 
partial sequence of transitions (yellow-shaded cells) 
taken by a RL agent from state 𝑆𝑆1 to state 𝑆𝑆8 whose 
intended goal state must be determined from among 
three possible goal states, {𝑆𝑆21, 𝑆𝑆23, 𝑆𝑆25}, using IRL-
based Bayesian formulation. Black-shaded cells 
indicate inaccessible states. 
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formulation, we need to compute the IRL reward 
functions and the corresponding reward-based 
policies 𝜋𝜋𝑖𝑖  for each goal state,𝐺𝐺𝑖𝑖 , using expert 
trajectories that terminate at each goal state. The 
posterior probability is computed using the 
formula: 

𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝜏𝜏𝐴𝐴:𝐵𝐵) =
𝑃𝑃𝜋𝜋𝑖𝑖(𝜏𝜏𝐴𝐴:𝐵𝐵|𝐺𝐺𝑖𝑖)𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝐴𝐴)

∑ 𝑃𝑃𝜋𝜋𝑗𝑗�𝜏𝜏𝐴𝐴:𝐵𝐵|𝐺𝐺𝑗𝑗�𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑗𝑗|𝐴𝐴)𝑗𝑗
             (3) 

where 𝐴𝐴 and 𝐵𝐵 correspond to states 𝑆𝑆1 and 𝑆𝑆8, 
respectively;  𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑗𝑗 ∈ {𝑆𝑆21, 𝑆𝑆23, 𝑆𝑆25}. The most 
likely goal state is then the state with the 
maximum posterior probability. 

In this work, we used the exact maximum 
entropy (ExactMaxEnt) IRL algorithm developed 
by Snoswell et al. (2020) to learn the rewards, 
instead of the original MaxEnt IRL algorithm 
developed by Ziebart et al. (2008) on which it was 
based on, because the ExactMaxEnt algorithm 
can be applied with variable length trajectories 
and various combinations of reward types (𝑅𝑅1(𝑠𝑠), 
𝑅𝑅2(𝑠𝑠,𝑎𝑎) , and 𝑅𝑅3(𝑠𝑠,𝑎𝑎, 𝑠𝑠’) ). It also improves the 
reward learning by computing marginal 
probabilities exactly. 

3. Problem formulation and 
computational approach 
Here, we present the problem of predicting the 
destination of authors from partial trajectories of 
their state transitions in their research topic 
vector space. The problem is formulated starting 
with a set of research publications of authors 
working in a nuclear domain. We convert each 
author’s sequence of publications in time into a 
sequence of state transitions on a rectangular 
grid that is defined by the research topic vector 
space of the publications. We then model the 
sequence of state transitions as a first-order 
Markov decision process (MDP) and use IRL to 
compute rewards that capture technology (goal 
state)-directed behavior of a group of authors. 
Finally, we develop and use a Bayesian 
formulation to compute the probability that a 
state in the topic space is the intended goal state, 
given a partial sequence of state transitions of an 
author. 

3.1 Case study 

To develop and test our approach, we selected 
papers based on a well-documented civil nuclear 
activity. In this work, we considered the 
construction of the Open Pool Australian 
Lightwater (OPAL) reactor in Australia (Olsen et 
al., 2008), as our case study application for the 
approach. The OPAL reactor is a 20-MW multi-
purpose reactor, used for producing 
radioisotopes for cancer detection and 

treatment, and neutron beams for fundamental 
materials research (ansto.gov). It went critical in 
August 2006 and was officially opened in 2007. 
The goal inference problem is to infer the 
development of OPAL reactor activity from 
temporal sequences of publications of authors 
conducting nuclear research. 

3.2. Approach 

The computational approach involves the use of 
topic modeling, reward learning, and Bayesian 
inference methods to solve the problem of 
predicting technology-directed publication 
behavior of authors from partial trajectories of 
their publication sequences. The approach 
consists of the following ten steps: 

Step 1. Find a paper or an initial set of papers 
associated with a technology or 
research activity. We call these papers 
the “coin” papers. 

Step 2. Identify the authors of these coin papers 
and create a primary set of all papers 
written by these authors, which also 
includes the coin papers. We refer to 
these authors as the coin authors. 

Step 3. Create a secondary set of papers 
published by co-authors of all the papers 
in the primary set. 

Step 4. Combine the primary and secondary set 
of papers into one dataset. 

Step 5. Extract the title, abstract, author 
information, and publication date of all 
the papers in the dataset. 

Step 6. Perform topic modeling using the titles 
and abstracts of all the papers to define 
the research topic weight
vector space. 

Step 7. Construct a state-action-state transition 
graph to represent the state transitions 
of all author trajectories. 

Step 8. Select the goal state associated with the 
technology of interest and the 
corresponding trajectory set for IRL 
reward learning.  

Step 9. Compute state and state-action rewards 
based on the trajectory set, using the 
IRL algorithm. 

Step 10. Calculate goal probability given a partial 
trajectory with a Bayesian formulation. 

3.2.1. Creating the dataset (Steps 1 to 4) 

The selection of the papers depends on the case 
study in hand. For our case study, we first 
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identified a flagship publication associated with 
OPAL reactor development or application, by 
searching Scopus for papers with keywords 
“Opal” and “reactor”, found in the title, abstract, 
and/or keyword fields. Since the OPAL reactor 
went critical in August 2006, search results from 
2004 through 2008 were considered. We 
considered a two-year time lag between the 
inception of a research activity and its 
publication. Hence a two-year buffer period for 
the search was applied after the year the OPAL 
reactor become operational. The chosen paper 
was written by Olsen et al. (2008). Here onwards, 
we shall call this flagship paper as the “coin” 
paper and the authors of this paper as coin 
authors (Step 1). The paper was written by nine 
authors, of whom five had Scopus ID's 
associated with a previous publication history.  

After identifying the coin paper, we searched 
Scopus for papers written by the coin authors by 
their Scopus IDs (Step 2). Based on the search, 
we created a primary set of 278 coin-authored 
papers, including the coin paper. We then 
created a secondary set of papers that were 
written by all the non-coin authors of papers in 
the primary set, and this set contained 28,918 
Scopus records (Step 3). Thus, a total of 29,196 
Scopus records (spanning over the years from 
1950 to 2008) were used to define the topic 
weight vector space of the OPAL MDP 
environment. 

3.2.2. Defining the topic weight vector space 
(Steps 5 and 6) 

We defined the topic weight vector space by first 
identifying an optimal number of K research 
topics to characterize the information extracted 
from the titles and abstracts of the 29,196 
Scopus records. We used the Non-negative 
Matrix Factorization (NMF) algorithm, as 
implemented in the Scikit-learn Python package 
(Pedregosa et al., 2011), to obtain a list of topics 
and weights associated with the 𝐾𝐾  topics for 
each paper.  

To extract the features (relevant words) from the 
abstracts and titles, we used the TfidfVectorizer 
function provided by Scikit-learn Python 
package. English stop words, words that 
occurred only in one record, and words that 
occurred in over 95% of the records were 
removed during feature extraction. To fit the NMF 
model and to compute the weights of the K 
topics per record, we used the NMF function 
from sklearn.decomposition.  

In addition to finding the optimal number of 
topics, we also determined the optimal 
combination of settings for three 

hyperparameters in the NMF analysis: alpha, 
solver, and initialization. This required running the 
NMF analyses for all possible hyperparameter 
combinations across a range of feature counts 
and number of components (topics) per feature 
count. The possible options for each 
hyperparameter were {‘0.02’, ‘0.1’, ‘0.5’} for 
alpha, {‘nndsvd’, ‘random,’ ‘nndsvda’} for 
initialization, and {‘cd’, ‘mu’} for solver. It is noted 
that the ‘mu’ solver does not use ‘nndsvd’ 
initialization. Therefore, a total of 15 combination 
of these hyperparameter values were explored. 
Due to the longer run times associated with the 
full paper set, we assumed the optimal 
hyperparameters for the primary set to be 
optimal or near optimal for the full paper set. 
Eight papers that were written in 2008 (about the 
same time as the coin paper) were omitted from 
the initial NMF training set to reduce the likelihood 
of papers with similar topics as that of the coin 
paper. Thus, the hyperparameter exploration 
was limited to 270 papers in the primary set. 
Specifically, for each feature count and 
hyperparameter combination, we ran the NMF 
analysis and calculated the residual errors for all 
number of components (topics) ranging from 1 to 
the number of features. Using the Kneedle 
algorithm (Satopaa et al., 2011) from the kneed 
python package, we then determined the optimal 
number of components, which corresponded to 
the point of maximum curvature (“knee”) in the 
error curve described by the residual error versus 
the number of components. For each 
hyperparameter combination, we then took the 
geometric mean of the optimal number of 
components across the sample features counts 
and compared these means to select the 
hyperparameter combination of solver, 
initialization, and alpha parameters that resulted 
in the lowest geometric mean value. The 
geometric mean value is the nth root of the 
product of number of component values across 
all sample feature counts per hyperparameter 
combination. The resulting hyperparameter 
values were ‘0.02’ for alpha, ‘cd’ for solver, and 
‘random’ for initialization. To avoid model 
overfitting, we applied the NMF function with 
Frobenius norm minimization and regularization, 
where the L1 to L2 ratio was set to 0, and alpha, 
the constant multiplying the regularization term 
was set to 0.02. 

Keeping the above hyperparameter settings, we 
then examined a more limited range of feature 
counts (up to 140) for the full set of 29,196 
papers and determined the optimal number of 
components (K topics) following the same steps 
above. Our analysis indicated that seven topics 
(𝐾𝐾 = 7) with a feature count of 50 was optimal. In 
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all the NMF calculations, the maximum number 
of iterations was set to 20,000 and the stop 
condition tolerance was 0.0001. 

3.2.3. Constructing the state-action-state 
transition graph (Step 7) 

Based on the publication dates of all the 29,196 
Scopus records, we created a temporal 
sequence of publications for each author, and 
then converted it to a sequence of state-action-
state transitions, which were combined 
afterwards to form a state-action-state transition 
graph. The construction of a state-action-state 
transition graph involves defining the state space, 
action space, and state-action-state transition 
probabilities of the author topic grid MDP 
environment. The nodes and edges of the graph 
represent the states and actions of the author 
topic grid MDP, respectively. The transition 
probabilities were specified along each edge 
based on the number of authors who traversed 
the edge as per the data. The resulting state-
action-state transition graph is a directed multi-
edge graph, since more than one action (edge) is 
possible from one state to the other.  

State space: We defined the states as the cells 
of a K-dimensional rectangular grid that 
represented the topic vector space of all the 
publications in the dataset. As described in the 

previous section, the topic weight vectors 
represent the topic vector space of the papers. 
Let 𝒘𝒘 = (𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝐾𝐾)  denote a topic weight 
vector of a publication record in the 𝐾𝐾 -
dimensional topic vector space, such that 
∑ 𝑤𝑤𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 1. We represent the topic vector space 

as a K-dimensional rectangular grid, where each 
axis represents the range of weight values from 
0 to 1 for each research topic. The grid space 

may be discretized using uniform or non-uniform 
grid intervals. We used a partially uniform grid 
where each grid dimension is divided into 𝑚𝑚 
intervals, such that the width of the first and the 
last interval is half the width of the intermediate 
intervals whose widths were 1/(𝑚𝑚 − 1) . The 
half-width interval was used to separately group 
publications with topic weights close to zero and 
one. Each publication can be mapped to a cell 
on the topic grid based on their topic weight 
values. For example, Fig. 3 illustrates a map of 20 
publications on a 2-dimensional topic grid (𝐾𝐾 =
 2), characterized by topic vector weights 𝑤𝑤1 and 
𝑤𝑤2. Each axis is divided into 5 intervals (𝑚𝑚 =  5), 
where the half-width interval is 1/8. This grid 
contains 25 grid cells (states), which can be 
numbered from 1 to 25 and these numbers are 
used to identify the states. The grid cell in which 
a publication is located is considered as the state 
(active research state) of an author of the 
publication. The number of grid cells (states) in 
the author topic MDP environment will depend 
on the choice of the grid cell spacing along each 
grid dimension. But not all grid cells will be 
occupied with a publication. For IRL reward 
learning, we considered only those grid cells with 
a minimum record occupancy of one to 
constitute the state space of the author topic grid 
MDP environment. Thus, the number of states in 
the state space is the number of grid cells with a 
minimum record occupancy of one. If 𝑁𝑁 is the 
number of states, the state space of the MDP is 
represented as 𝑆𝑆 = {𝑆𝑆𝑖𝑖|𝑖𝑖 = 1,2, … ,𝑁𝑁}.  

Action space: We defined the actions as the 
difference in the number of years it took for 
authors to move from one state (grid cell) to 
another in the topic MDP grid environment. For 
example, if an author has a paper published in 
year 𝑡𝑡1 and is in state 𝑆𝑆1, and the author’s next 
publication is in year 𝑡𝑡2 and in state 𝑆𝑆2, the action 
taken by the author to move from state 𝑆𝑆1 to 𝑆𝑆2 
is calculated as 𝑡𝑡 = 𝑡𝑡2 − 𝑡𝑡1. The graph will have a 
directed edge for the action 𝑡𝑡 drawn from state 
𝑆𝑆1 to 𝑆𝑆2. If the year difference was 0, we used the 
month and day information from the publication 
dates to determine the direction of the edge 
along each state transition. Actions that do not 
cause a change in the state of the author will 
result in self-loops, which are ignored in the 
state-action-state transition graph. If 𝑀𝑀  is the 
number of states, the action space of the MDP is 
represented as 𝐴𝐴 = �𝐴𝐴𝑗𝑗|𝑗𝑗 = 1,2, … ,𝑀𝑀�. 

Differences in state transitions between a 
standard grid world walk and the author topic 
grid world walk: In the RL framework, it is 
important to understand how the RL agent will 
move (walk) from one state to the other. 

Figure 3. A 5 x 5 topic grid world environment 
illustrating the mapping of 20 research publications 
on a two-dimensional grid with 1/8 grid spacing for 
weight values near zero and one, and 2/8 spacing 
for the others. 
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Compared to a geo-spatially constrained grid 
world MDP walk, such as the 5 x 5 grid MDP walk 
shown in Fig. 1, the author MDP grid walk is not 
limited to adjacent state transitions in the topic 
grid space. There are no self-loops in the grid 
world walk because the agent needs to move out 
of a state to come back to that state. On the 
other hand, self-loops can exist in the author 
topic grid walk because an author can publish an 
article that falls in the same state as the previous 
one in time. In the grid world walk, an agent 
cannot jump over states in its path. In the author 
topic grid walk, authors can jump from one state 
to every other state. In the grid world walk, all the 
accessible states from each state are known. In 
the author topic grid walk, however, not all 
accessible states from each state are known 
because new state transitions can occur in the 
future, although they do not exist at the current 
point in time. Although, in theory, an RL agent 
can move from one state to every other state in 
the author topic grid walk, in our work, we limit 
the RL agent movements only to state transitions 
known from all the author trajectories in the 
dataset. 

Transition probability: The transition probability, 
denoted as 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎), along each (𝑠𝑠,𝑎𝑎, 𝑠𝑠′) edge 
was computed by dividing the number of authors 

who moved from state 𝑠𝑠  to state 𝑠𝑠′  through 
action 𝑎𝑎  by the total number of authors who 
moved to all accessible states from 𝑠𝑠 through 𝑎𝑎. 

 3.2.4. Trajectory set for IRL reward learning 
(Step 8) 

The IRL reward learning begins by selecting a 
goal state, followed by a set of expert trajectories 
𝒯𝒯 that terminate at the goal state. In the author 
topic MDP grid space, authors can take different 
paths to a goal state, from different starting 
states. This will result in trajectories of unequal 
lengths in the set 𝒯𝒯, where the length is defined 
as the number of states from a starting state to 
the goal state in a trajectory. Additionally, sub-
trajectories can be realized as starting from 
states away from the goal state in varied number 
of steps, in an author trajectory. To form the 
trajectory set 𝒯𝒯  for reward learning, we first 
select a sub-trajectory of a specified length 𝐿𝐿 , 
which terminates at the goal state in each author 
trajectory. Each sub-trajectory and their 
subsequent ones are reduced in length by one, 
after removing the first state until the length is 
two. This process results in a set of trajectories 
of length varying from 2 to 𝐿𝐿. To illustrate this 
process, let’s consider an author trajectory with 
10 states as shown in Fig. 4, where 𝑠𝑠8  is 

Figure 4. An illustration of how sub-trajectories of a specified length 𝐿𝐿 = 5, with goal state 𝑠𝑠8, are derived from an 
author trajectory with 10 states, before and after padding with auxiliary state 𝑠𝑠𝑎𝑎 and action 𝑎𝑎𝑎𝑎. 
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indicated as the goal state. If 𝐿𝐿 =  5, then four 
sub-trajectories can be derived from this 
trajectory, as shown in Fig. 4. These trajectories 
vary in length from 2 to 5 states. Thus, the IRL 
training set used for the reward calculations will 
contain trajectories of variable lengths from 2 to 
𝐿𝐿, which are obtained from all author trajectories 
that contain the goal state. To make the reward 
learning efficient, we make all the trajectories in 
the IRL training set to be of the same length, 𝐿𝐿, 
using the padding trick described by Snoswell et 
al. (2020). Specifically, we pad trajectories 
shorter than the longest trajectory, which is of 
length 𝐿𝐿  in the set, with auxiliary state-action 
sequences, {(∙,𝑎𝑎𝑎𝑎), (𝑠𝑠𝑎𝑎,∙)} . An example of 
padding is shown in Fig. 4, where all the 
trajectories are of length 5 after padding. It 
should be noted that in our implementation of the 
IRL reward learning algorithm, we represented 
each sub-trajectory of length 𝐿𝐿 as a sequence of 
state-action transitions as ((𝑠𝑠1,𝑎𝑎1), (𝑠𝑠2,𝑎𝑎2), …, 
(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), …, (𝑠𝑠𝐿𝐿,𝑎𝑎𝑎𝑎))  where an author starts from 
state 𝑠𝑠1 and ends at the terminal state 𝑠𝑠𝐿𝐿 in 𝐿𝐿 −
1 action steps. The transition (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) refers to the 
state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 and action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 at step 𝑡𝑡. The last 
action step, (𝑠𝑠𝐿𝐿,𝑎𝑎𝑎𝑎), is an added step for the 
transition from the terminal state 𝑠𝑠𝐿𝐿  to the 
auxiliary state 𝑠𝑠𝑎𝑎 through the auxiliary action 𝑎𝑎𝑎𝑎 
(not shown in Fig. 4). In this work, we set the 𝐿𝐿 
value to the length of the shortest coin author 
trajectory. 

3.2.5. Reward learning (Step 9) 

We used the ExactMaxEnt IRL algorithm 
(Snoswell et al., 2020) to compute the rewards of 
the author topic grid MDP and implemented it in 
Python. The algorithm can be used to compute 
three types of rewards: state rewards 𝑅𝑅1(𝑠𝑠) , 
state-action rewards 𝑅𝑅2(𝑠𝑠,𝑎𝑎) , or state-action-
state rewards 𝑅𝑅3(𝑠𝑠,𝑎𝑎, 𝑠𝑠′). Each reward type is 
defined as a linear function of the respective 
state, state-action, or state-action-state feature 
vectors, with reward weight vectors 𝜽𝜽𝟏𝟏, 𝜽𝜽𝟐𝟐, and 
𝜽𝜽𝟑𝟑, respectively. The objective of the algorithm is 
then to fit the reward weights to match the 
discounted feature expectations in the set (𝒯𝒯)  of 
observed trajectories that terminate at the goal 
state.  For the author topic MDP, we used the 
state and state-action rewards to model the 
goal-directed behavior of the authors, and they 
were calculated as follows.  

Let 𝑛𝑛1 and 𝑛𝑛2 represent the number of state and 
state-action features of the author topic MDP, 
respectively. The state reward function is written 
as 𝑅𝑅1(𝑠𝑠) = 𝜽𝜽𝟏𝟏T𝒇𝒇𝟏𝟏(𝑠𝑠) , where 𝒇𝒇𝟏𝟏(𝑠𝑠) is the feature  
vector of state 𝑠𝑠 ∈ 𝑆𝑆 of size 𝑛𝑛1 × 1, and 𝜽𝜽𝟏𝟏 is the 
state reward weight vector of size 𝑛𝑛1 × 1. The 
state-action reward function is written as 

𝑅𝑅2(𝑠𝑠,𝑎𝑎) = 𝜽𝜽𝟐𝟐T𝒇𝒇𝟐𝟐(𝑠𝑠,𝑎𝑎) , where 𝒇𝒇𝟐𝟐(𝑠𝑠,𝑎𝑎)  is the 
feature vector of the state-action pair (𝑠𝑠,𝑎𝑎) ∈
(𝑆𝑆,𝐴𝐴) of size 𝑛𝑛2 × 1, and 𝜽𝜽𝟐𝟐  is the state-action 
reward weight vector of size 𝑛𝑛2 × 1. 

The actual state and state-action features of the 
author topic MDP are not known, and such 
information may not be readily available, or may 
be difficult to obtain or learn from data. Therefore, 
we considered the rewards to be independent of 
these features by setting the state and state-
action feature vectors as unit vectors of length 
𝑛𝑛1 = 𝑁𝑁 and 𝑛𝑛2 = 𝑁𝑁𝑀𝑀, respectively. For example, 
the state-feature vector for state 𝑆𝑆𝑖𝑖 is specified as 
𝒇𝒇𝟏𝟏(𝑠𝑠 = 𝑆𝑆𝑖𝑖) = (𝑏𝑏𝑘𝑘)𝑘𝑘=1𝑁𝑁  such that 𝑏𝑏𝑘𝑘 = 1 , if 𝑘𝑘 = 𝑖𝑖 
and 𝑏𝑏𝑘𝑘 = 0, otherwise.  Similarly, the state-action 
feature vector for all state-action pairs �𝑆𝑆𝑖𝑖 ,𝐴𝐴𝑗𝑗� is 
specified as 𝒇𝒇𝟐𝟐�𝑠𝑠 = 𝑆𝑆𝑖𝑖 ,𝑎𝑎 = 𝐴𝐴𝑗𝑗� = (𝑐𝑐𝑘𝑘)𝑘𝑘=1𝑀𝑀𝑁𝑁  such 
that 𝑐𝑐𝑘𝑘 = 1 , if 𝑘𝑘 = (𝑖𝑖 − 1)𝑀𝑀 + 𝑗𝑗  and 𝑐𝑐𝑘𝑘 = 0 , 
otherwise. This makes the reward weights 
equivalent to the respective rewards. In our work, 
we fitted the reward weights (rewards) to predict 
and match the average state and state-action 
visitation frequencies in the set of expert 
trajectories, as described below. 

If there are 𝑛𝑛𝑇𝑇 trajectories in the expert trajectory 
set 𝒯𝒯, and each trajectory 𝜏𝜏𝑘𝑘 is a sequence of 𝐿𝐿 
states, represented as �𝑠𝑠𝑘𝑘,𝑡𝑡 ,𝑎𝑎𝑘𝑘,𝑡𝑡�𝑡𝑡=1

𝐿𝐿
, where 

𝑠𝑠𝑘𝑘,𝑡𝑡 ∈ 𝑆𝑆  and 𝑎𝑎𝑘𝑘,𝑡𝑡 ∈ 𝐴𝐴 , then the average state 
visitation frequency for each state in 𝑆𝑆  is 
calculated as 

                    𝒇𝒇𝟏𝟏��� =
1
𝑛𝑛𝑇𝑇

��𝒇𝒇𝟏𝟏�𝑠𝑠𝑘𝑘,𝑡𝑡�
𝐿𝐿

𝑡𝑡=1

𝑛𝑛𝑇𝑇

𝑘𝑘=1

,                    (4) 

and the average state-action visitation frequency 
for each state-action pair in ��𝑆𝑆𝑖𝑖 ,𝐴𝐴𝑗𝑗�|𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆,𝐴𝐴𝑗𝑗 ∈
𝐴𝐴� is calculated as  

              𝒇𝒇𝟐𝟐��� =
1
𝑛𝑛𝑇𝑇

��𝒇𝒇𝟐𝟐�𝑠𝑠𝑘𝑘,𝑡𝑡 ,𝑎𝑎𝑘𝑘,𝑡𝑡�
𝐿𝐿−1

𝑡𝑡=1

𝑛𝑛𝑇𝑇

𝑘𝑘=1

.                  (5) 

In addition to the state and action spaces, 𝑆𝑆 and 
𝐴𝐴, we also include an auxiliary state space {𝑆𝑆𝑎𝑎} 
and an auxiliary action space {𝐴𝐴𝑎𝑎} . The 
combined state and auxiliary state spaces is 
denoted as 𝑆𝑆∗ = 𝑆𝑆 ∪ {𝑆𝑆𝑎𝑎} = �𝑆𝑆𝑗𝑗| 𝑗𝑗 = 1, … ,𝑁𝑁 +
1�, where 𝑆𝑆𝑁𝑁+1 = 𝑆𝑆𝑎𝑎. The combined action and 
auxiliary action spaces is denoted as 𝐴𝐴∗ = 𝐴𝐴 ∪
{𝐴𝐴𝑎𝑎} = �𝐴𝐴𝑗𝑗| 𝑗𝑗 = 1, … ,𝑀𝑀 + 1�, where 𝐴𝐴𝑀𝑀+1 = 𝐴𝐴𝑎𝑎. 

In the trajectories, the auxiliary state is treated as 
a self-absorbing state and is accessible from all 
states only through the auxiliary action. Thus, we 
set the transition probability for all state-action-
state transitions involving the auxiliary state and 
action as follows:  
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            𝑇𝑇(𝑠𝑠𝑎𝑎|𝑠𝑠,𝑎𝑎) = �

1,∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 = 𝑎𝑎𝑎𝑎
0,∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ≠ 𝑎𝑎𝑎𝑎 
1, 𝑠𝑠 = 𝑠𝑠𝑎𝑎,𝑎𝑎 = 𝑎𝑎𝑎𝑎
0, 𝑠𝑠 = 𝑠𝑠𝑎𝑎,𝑎𝑎 ∈ 𝐴𝐴

.           (6) 

To remove the effect of the auxiliary state and 
action on the rewards accumulated along a 
trajectory, we set 𝑅𝑅1(𝑠𝑠𝑎𝑎) = 0 , 𝑅𝑅2(𝑠𝑠𝑎𝑎,𝑎𝑎𝑎𝑎) = 0 , 
and 𝑅𝑅2(𝑠𝑠𝑎𝑎,𝑎𝑎) = 0 ∀ 𝑎𝑎 ∈ 𝐴𝐴. 

To compute the rewards, we first initialized the 
reward weights with uniformly distributed 
random values and updated them until 
convergence. Fig. 5 shows the basic steps 
involved in a single iteration of the reward learning 
process based on the ExactMaxEnt IRL 
algorithm (Snoswell et al., 2020). The discount 
factor, 𝛾𝛾 = 0.99 in all the calculations. We define 
the frequency of times a state 𝑠𝑠 ∈ 𝑆𝑆 occurred as 
the starting state in the expert trajectory set, as 
its starting probability, which is denoted as 𝑝𝑝0(𝑠𝑠). 
We then use the forward-backward algorithm for 
a first-order MDP to efficiently compute the state 
marginal probability, 𝑝𝑝𝑡𝑡(𝑠𝑠), that an author will visit 
each state 𝑠𝑠  at step 𝑡𝑡 , and the state-action 
marginal probability, 𝑝𝑝𝑡𝑡(𝑠𝑠,𝑎𝑎) , that the author 
perform an action 𝑎𝑎 at step 𝑡𝑡, from all observed 
starting states, respectively. The state marginal 
probability, 𝑝𝑝𝑡𝑡(𝑠𝑠), is calculated for 𝑡𝑡 = 1 to 𝐿𝐿 − 1 
as, 

𝑝𝑝𝑡𝑡(𝑠𝑠)

=
𝛼𝛼𝑡𝑡(𝑠𝑠)
𝑍𝑍

 � 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑒𝑒𝛾𝛾𝑡𝑡−1𝑅𝑅2(𝑠𝑠,𝑎𝑎)𝛽𝛽𝐿𝐿−𝑡𝑡(𝑠𝑠′)
𝑎𝑎∈𝐴𝐴∗,𝑠𝑠′∈𝑆𝑆∗

, (7) 

and for 𝑡𝑡 = 𝐿𝐿 as, 

                              𝑝𝑝𝐿𝐿(𝑠𝑠) =
𝛼𝛼𝐿𝐿(𝑠𝑠)
𝑍𝑍

,                             (8) 

where 𝛼𝛼𝑡𝑡(𝑠𝑠) and 𝛽𝛽𝑡𝑡(𝑠𝑠)  are the forward and 
backward message variables, defined as 

                𝛼𝛼1(𝑠𝑠) = 𝑝𝑝0(𝑠𝑠) exp�𝑅𝑅1(𝑠𝑠)�                     (9) 

𝛼𝛼𝑡𝑡+1(𝑠𝑠′)
= � 𝛼𝛼𝑡𝑡(𝑠𝑠) 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎) exp�𝛾𝛾𝑡𝑡𝑅𝑅1(𝑠𝑠′)�

𝑠𝑠∈𝑆𝑆∗,𝑎𝑎∈𝐴𝐴∗
,

for 1 ≤ 𝑡𝑡 < 𝐿𝐿,                                                          (10) 

             𝛽𝛽1(𝑠𝑠) = exp�𝛾𝛾𝐿𝐿−1𝑅𝑅1(𝑠𝑠)� , and              (11) 

𝛽𝛽𝑡𝑡+1(𝑠𝑠)
= � 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎) exp�𝛾𝛾𝐿𝐿−𝑡𝑡−1𝑅𝑅1(𝑠𝑠)� 𝛽𝛽𝑡𝑡(𝑠𝑠′)

𝑠𝑠′∈𝑆𝑆∗,𝑎𝑎∈𝐴𝐴∗
,

for 1 ≤ 𝑡𝑡 < 𝐿𝐿.                                                         (12) 

The partition function, 𝑍𝑍, is calculated as 

                         𝑍𝑍 = ��𝛼𝛼𝑡𝑡(𝑠𝑠)
𝑠𝑠∈𝑆𝑆

𝐿𝐿

𝑡𝑡=1

.                        (13) 

The state-action marginal probability, 𝑝𝑝𝑡𝑡(𝑠𝑠,𝑎𝑎) is 
calculated as 

𝑝𝑝𝑡𝑡(𝑠𝑠,𝑎𝑎)

=
𝛼𝛼𝑡𝑡(𝑠𝑠)
𝑍𝑍

� 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎) exp�𝛾𝛾𝑡𝑡−1𝑅𝑅2(𝑠𝑠,𝑎𝑎)� 𝛽𝛽𝐿𝐿−𝑡𝑡(𝑠𝑠′)
𝑠𝑠′∈𝑆𝑆∗

,

for 𝑡𝑡 = 1 to 𝐿𝐿 − 1.                                                   (14) 

We update the state and state-action reward 
weights using a gradient descent approach 
based on the difference between the observed 
and IRL-predicted values for both the state as 
well as the state-action visitation frequencies, 
respectively. The state reward weight is updated 
as,  

                     𝜽𝜽𝟏𝟏 ≔ 𝜽𝜽𝟏𝟏 + 𝜀𝜀1𝛁𝛁𝜽𝜽𝟏𝟏,                            (15) 

where 𝜀𝜀1 is the learning rate and the state reward 
gradient 𝛁𝛁𝜽𝜽𝟏𝟏 is calculated as 

              𝛁𝛁𝜽𝜽𝟏𝟏 = 𝒇𝒇𝟏𝟏��� −�𝒇𝒇𝟏𝟏(𝑠𝑠)
𝑠𝑠∈𝑆𝑆

�𝑝𝑝𝑡𝑡(𝑠𝑠)
𝐿𝐿

𝑡𝑡=1

.        (16) 

Figure 5. Steps of the reward learning process based on the ExactMaxEnt IRL for the author topic MDP. 
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The state-action reward weight is updated as, 

                  𝜽𝜽𝟐𝟐 ≔ 𝜽𝜽𝟐𝟐 + 𝜀𝜀2𝛁𝛁𝜽𝜽𝟐𝟐,                               (17) 

where 𝜀𝜀2 is the learning rate and the state-action 
reward gradient 𝛁𝛁𝜽𝜽𝟐𝟐 is calculated as 

𝛁𝛁𝜽𝜽𝟐𝟐 = 𝒇𝒇𝟐𝟐��� − � 𝒇𝒇𝟐𝟐(𝑠𝑠,𝑎𝑎)
𝑠𝑠∈𝑆𝑆,𝑎𝑎∈𝐴𝐴

�𝑝𝑝𝑡𝑡(𝑠𝑠,𝑎𝑎)
𝐿𝐿−1

𝑡𝑡=1

.        (18) 

The reward learning steps (Fig. 5) were repeated 
3000 times with learning rates equal to 0.05 for 
both 𝜀𝜀1 and 𝜀𝜀2. These settings were needed to 
obtain converged results. We assessed the 
convergence of the IRL simulations based on the 
root mean squared values of the reward 
gradients and the strength of correlation between 
the observed and predicted values of both the 
state and state-action visitation frequencies. The 
lower the reward gradients and the higher the 
correlation, the better the convergence. 

3.2.6. Goal probability calculation (Step 10) 

Goal probability calculations were performed to 
infer which state out a selected set of possible 
goal states, an author is most likely to publish in, 
given a partial trajectory of their observed state 
transitions in the author topic MDP grid space. 
We have developed a Bayesian formulation for 
computing the goal probabilities, like how the 
driver destination probabilities are calculated 
from partial trip trajectories (Ziebart et al., 2008). 
In the case of driver destination prediction, it is 
assumed that the driver’s intent towards a 
destination occurs at the start of the trip. In the 
case of author trajectories, which are based on 
their sequences of publications in time, it cannot 
be known at what point (in time) along the 
trajectory, the author begins to have an intent to 
publish in a particular goal state. Therefore, in our 
Bayesian formulation, we considered the 
publication intent to begin at the previous state 
of each step along the trajectory, and computed 
the goal probability as follows.  

Let’s consider a set of 𝑁𝑁𝑔𝑔 goal states, denoted 
as 𝐺𝐺 = �𝐺𝐺𝑖𝑖|𝑖𝑖 = 1:𝑁𝑁𝑔𝑔�, where 𝐺𝐺 ⊂ 𝑆𝑆. One of the 
goal states is the coin state, which is the state 
where the coin paper is located. The objective of 
the goal inference is to determine which of the 𝑁𝑁𝑔𝑔 
goal states is an author pursuing, given the 
observed steps (or states) of a partial trajectory. 
In other words, which reward policy (behavior) is 
the author following?  Let 𝜋𝜋𝑖𝑖  denote the RL 
agent’s reward policy based on the rewards 
calculated for each goal state 𝐺𝐺𝑖𝑖 ∈ 𝐺𝐺.  

Let’s consider a partial trajectory of 𝑡𝑡  state 
transitions, (𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)𝑘𝑘=1𝑡𝑡 . For each step 𝑠𝑠𝑘𝑘−1  to 
𝑠𝑠𝑘𝑘  in the partial trajectory and for each reward 

policy 𝜋𝜋𝑖𝑖, we calculate the posterior probability of 
reaching each state 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 of the MDP in 𝐿𝐿 − 1 
steps, using the formula, 

𝑃𝑃𝜋𝜋𝑖𝑖�𝑆𝑆𝑗𝑗�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘�                                                                     

=
𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘|𝑆𝑆𝑗𝑗�𝑃𝑃𝜋𝜋𝑖𝑖(𝑆𝑆𝑗𝑗|𝑠𝑠𝑘𝑘−1)

∑ 𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘|𝑆𝑆𝑗𝑗�𝑃𝑃𝜋𝜋𝑖𝑖(𝑆𝑆𝑗𝑗|𝑠𝑠𝑘𝑘−1)𝑗𝑗
.                  (19) 

Here, the likelihood, 

𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘|𝑆𝑆𝑗𝑗� =
𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘 → 𝑆𝑆𝑗𝑗�
𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘−1 → 𝑆𝑆𝑗𝑗�

,                (20) 

is the probability that the agent with policy 𝜋𝜋𝑖𝑖 will 
move from state 𝑠𝑠𝑘𝑘−1 to state 𝑠𝑠𝑘𝑘, if the agent’s 
intended (desired) goal state is 𝑆𝑆𝑗𝑗. 𝑃𝑃𝜋𝜋𝑖𝑖(𝑆𝑆𝑗𝑗|𝑠𝑠𝑘𝑘−1) is 
the prior probability based on all paths of length 
≤ 𝐿𝐿  observed in the expert trajectory set from 
state 𝑠𝑠𝑘𝑘−1 to 𝑆𝑆𝑗𝑗. This is computed with a starting 
probability of 1 for the state 𝑠𝑠𝑘𝑘−1. 𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘−1 → 𝑆𝑆𝑗𝑗� 
and 𝑃𝑃𝜋𝜋𝑖𝑖�𝑠𝑠𝑘𝑘 → 𝑆𝑆𝑗𝑗� are the total path probabilities 
of reaching the state 𝑆𝑆𝑗𝑗  within 1 to 𝐿𝐿 − 1 steps 
through all possible paths in the author topic 
MDP from 𝑠𝑠𝑘𝑘−1  and 𝑠𝑠𝑘𝑘 , respectively. The total 
path probabilities to the 𝑆𝑆𝑗𝑗 state from each state 
of the partial trajectory were computed using the 
forward pass algorithm, where the starting 
probability of each state 𝑠𝑠𝑘𝑘 was set as  

    𝑝𝑝0(𝑠𝑠𝑘𝑘) = �
1,                                 if 𝑘𝑘 = 1
𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘),       if 𝑘𝑘 > 1 .        (21) 

To infer the reward policy (or the associated goal 
state) of an author along each step 𝑠𝑠𝑘𝑘−1 to 𝑠𝑠𝑘𝑘 of 
the author’s partial trajectory, we compute the 
probability of reaching each of the 𝑁𝑁𝑔𝑔   goal 
states, 𝐺𝐺𝑖𝑖 ∈ 𝐺𝐺 , in 𝐿𝐿 − 1 steps using the reward 
policy 𝜋𝜋𝑖𝑖, as, 

𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘)                                                                     

=
𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘|𝐺𝐺𝑖𝑖)𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1)

∑ 𝑃𝑃𝜋𝜋𝑗𝑗�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘|𝐺𝐺𝑗𝑗�𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑗𝑗|𝑠𝑠𝑘𝑘−1)𝑗𝑗
,                   (22) 

where, the likelihood is calculated using Eq. (20), 
and 𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1) is the prior probability based on 
all paths of length ≤ 𝐿𝐿  observed in the expert 
trajectory set from state 𝑠𝑠𝑘𝑘−1 to 𝐺𝐺𝑖𝑖.  

Finally, the goal probability of reaching the goal 
state 𝐺𝐺𝑖𝑖  by the agent with policy 𝜋𝜋𝑖𝑖  based on 
observing 𝑡𝑡  state transitions is given by the 
normalized cumulative sum of the probabilities 
𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘)  from each step (𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘) , 
where 𝑘𝑘 = 1,2, … , 𝑡𝑡, and is written as, 

            𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)𝑘𝑘=1𝑡𝑡 )                                  

           =
∑ 𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘)𝑡𝑡
1

∑ ∑ 𝑃𝑃𝜋𝜋𝑗𝑗�𝐺𝐺𝑗𝑗�𝑠𝑠𝑘𝑘−1 → 𝑠𝑠𝑘𝑘�𝑡𝑡
1𝑗𝑗

.                     (23) 
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4. Results 
We present the topic modeling, IRL and goal 
inference results for the OPAL case study 
application to demonstrate technology-directed 
goal inference of author behavior in the nuclear 
research topic MDP grid environment. For 
demonstrating the inference problem, we 
selected four goal states; one of them is the coin 
state where the OPAL coin paper is located. 

4.1 Topic modeling 

Based on NMF topic modeling, we defined the 
topic vector space of the 29,196 Scopus records 
in the OPAL case study application with seven 
topics. Fig. 6 presents the seven topics with 
normalized weight contributions of the top ten 
distinct keywords per topic, where the topics are 
numbered from 1 to 7. The keywords are distinct 
enough to provide a unique meaning to each 
topic. All the topics indicate some measurement 
study or analysis related to nuclear research. 
Based on these keywords, we interpret the 
topics as: 

• Magnetic field effects (Topic 1), 
• Temperature-based phase transition (Topic 

2), 
• Small angle neutron scattering 

measurements and models (Topic 3), 

• Crystal structure and diffraction (Topic 4), 
• Surface reaction-based analysis of materials 

(Topic 5), 
• Properties of compounds (Topic 6), and 
• Electron orbitals as the basis for crystal 

properties (Topic 7). 
 
Based on the topic weight distribution, a paper 
may cover multiple topics with varying weights, 
and one topic may be highly weighted than all 

others. For example, the coin paper has two 
topics, Topics 1 and 3, with weights 0.27 and 
0.73, respectively. The abstract of the coin paper 
mentions the use of OPAL cold neutron source 
for small angle neutron scattering experiments 
(Topic 3) and the use of horizontal field HTS 
magnet (Topic 1) in its cold neutron instruments. 
Approximately 22.24% of the records have a 
dominant topic weight greater than 0.7 (6494 out 
of 29196 records). Specifically for topics 1 to 7, 
this number was 577, 1818, 999, 1214, 845, 
622, and 419, respectively. 

4.2 OPAL state-action-state transition graph 

We discretized the seven-dimensional topic 
vector space by dividing each dimension into six 
intervals with 0.1 width for the first and last 
intervals, and 0.2 for the intermediate intervals. 
Mapping the topic weights of the records on to 

Figure 6. Normalized weight distribution of top ten keywords in each of the seven topics used for characterizing the 
topic vector space of 29,196 Scopus records. 



ESARDA BULLETIN, No. 66, December 2024 

 

19 
 

the grid resulted in 1,276 grid cells with 
occupancies ranging from 1 to 942 records, as 
shown in Fig. 7. About 75.6% of the grid cells 
(i.e., 965 out of 1,276) contained less than 26 
records each, which accounted for 51.3% of the 
total records (i.e., 6,265 out of 12,196). The 
highest number of 942 records, which 
accounted for 3.2% of the total records, was 
found in the state with the lowest range of weight 
values across all seven topics in the topic grid 
space. 

The occupied grid cells were selected as the 
states for the author topic MDP. Our action 
definition resulted in 15 actions, where the 
maximum year difference observed between two 
sequential publications was 15 and the minimum 
was 0. A year difference of 13 was not observed 
in the data. The data contained 403 author 
publication sequences, out of which 402 were 
represented as state-action-state trajectories 
using the 1,276 states and 15 actions. The states 
were numbered from 1 to 1276 for identification. 
One author trajectory was ignored because it had 
only one state transition with a self-loop. The 
frequency of transitions in the 402 trajectories 
were used to compute the transition 
probabilities. The state-action transitions present 
in the author trajectories formed the OPAL state-
action-state transition graph with 1276 nodes 
(states) and a maximum of 15 incoming/outgoing 
edges (actions) per node. Thus, the author topic 
MDP was represented as a stochastic MDP with 
1,276 states, 15 actions, transitional 
probabilities, and a discount factor 𝛾𝛾 = 0.99. We 
note that the author trajectories are of different 
lengths and within a trajectory, an author can re-
visit a state two or more times. For example, the 
length (number of states) of the five coin author 
trajectories were 17, 37, 58, 80, and 98. Fig. 8 
shows the state transitions of one coin author 
based on their whole publication sequence, 
starting from their initial publication to the coin 
publication.  

4.3 IRL-based Bayesian goal inference 

We computed the state and state-action rewards 
for four sets of author trajectories. These 
trajectories terminate at one of four different goal 
states, with one of the states being the coin state. 
We identify the four goal states by numbers, as 
53, 132, 145, and 212, and denote the 
corresponding trajectory sets as 𝒯𝒯53, 𝒯𝒯132, 𝒯𝒯145, 
and 𝒯𝒯212, respectively. Goal state 53 is the coin 
state. Goal states 132, 145, and 212 were 
arbitrarily picked while ensuring their 
corresponding trajectory sets do not contain the 
coin state. The length of all the trajectories used 
in the IRL training set was set to 𝐿𝐿 = 17, based 
on the length of the shortest coin-author 
trajectory. The coin state trajectory set 𝒯𝒯53 
contained 45 author trajectories, out of which six 
were of the five coin authors. There were six 
instead of five coin-authored trajectories in the 
set because one coin author, whose full 
trajectory had 98 states, had visited the coin 
state twice and they were coincidentally 17 steps 
apart, resulting in two trajectories of length ≤ 17 
for this author. For the IRL reward calculations, 
we excluded the six coin-author trajectories from 
𝒯𝒯53   and used them as a test set for external 
validation. Thus, the number of 𝒯𝒯53  trajectories 
used for the reward learning was 39. The sets 
𝒯𝒯132 , 𝒯𝒯145 , and 𝒯𝒯212  contained 14 trajectories, 
and all of them were used for reward learning.  

The IRL simulations converged with root mean 
squared values below 0.003 for the reward 
gradients. The linear correlation coefficients 
between the observed and predicted values of 

Figure 7. Frequency distribution of the number of grid 
cells occupied according to the number of records 

Figure 8. State transitions of a coin author based on 
their whole publication sequence in the dataset. The 
author begins in state 0 and ends in coin state 53 
through 16 steps. The number along each arrow 
represents the step number. 
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both the state as well as state-action visitation 
frequencies were approximately 0.99 for all four 
trajectory sets, which provided further validation 
for convergence after 3000 reward updates. 
Each IRL simulation took about 17 hours to 
complete on a Windows laptop with 32 GB RAM 
and 20 2.4-GHz processors. 

After learning the reward policies of the authors 
for the four goal states, we performed three types 
of validation for goal inference, on the trajectories 
that were used for learning the reward policies 
(the training sets). First, we evaluated whether the 
posterior probabilities that are computed based 
on each trajectory set’s actual goal state reward 
policy (Eq. (19)) can be used to infer the goal 
state of the trajectories in the set. Specifically, we 
determined if the reward policy captures the 
correct goal-directed behavior of the authors by 
resulting in higher posterior probability values for 
the actual goal state than that for the other 1,275 
states. In the second validation, we performed 
goal inference with all four reward policies on 
each trajectory set to determine if the posterior 
probabilities are lower for the reward policies that 
are not of the actual goal state. In the third 
validation, we computed the goal probabilities 
using Eq. (23), to determine if they are higher for 
the reward policy associated with the actual goal 
state of each trajectory set.  

To further evaluate the performance of the 
learned reward policy for inferring the goal-
directed behavior of coin authors, we performed 
a fourth validation by testing the goal inference 
on the six coin-author trajectories and comparing 
the goal probabilities based on each reward 
policy. These tests provided an external 
validation for the reward policies by testing on 
trajectories that are not in the training sets. 

4.3.1. Goal inference via ranking all the MDP 
states by their posterior probabilities in each 
training trajectory set using the set’s goal state 
reward policy  

Using the reward policy learned from each 
trajectory set, we computed the posterior 
probability of reaching each of the 1,276 OPAL 
MDP states at every step of a trajectory in the set 
(using Eq. (19)). We then ranked the states in 
descending order of their posterior probability 
values. The state with the highest rank, i.e., the 
state with the maximum posterior probability, 
was considered the most probable goal state. 
After identifying the highest ranked state in the 
first 15 steps of each trajectory, we computed 
the frequency of times (percentage of 
trajectories) each state was ranked first in every 
step. Fig. 9 shows the frequency values of the 
goal states 53, 132, 145, and 212, when they 
ranked first at each step in their respective 
trajectory sets. In most steps, the frequency was 
the highest for the actual goal state of each 
trajectory set (although not fully at 100%), 
signifying that the reward policies are able to 
capture the correct goal-directed behavior of the 
authors in their respective training sets. For 
example, with reward policy 𝜋𝜋53 , the state 53 
was inferred to be the most probable goal state 
at step 4 in 56% of the trajectories (𝒯𝒯53 ) (i.e., 
approximately 22 out of 39 trajectories). For the 
set 𝒯𝒯212, at steps 5 and 11, the goal state was 
correctly inferred for only one out of the 14 
trajectories in the set. In this case, the inferred 
goal state varied across all the 14 trajectories. For 
each set of trajectories, the rankings indicate that 
other states can be inferred as the goal state 
besides the actual goal state, but at lower 
frequencies. In total, there were 173, 56, 87, and 
96 states inferred at least once as the goal state 
in the trajectory sets 𝒯𝒯53 , 𝒯𝒯132 , 𝒯𝒯145 , and 𝒯𝒯212 , 
respectively. It can also be seen that the 
frequencies are nearly 100% in the step before 
the trajectories terminate at their respective 
actual goal states.  

Although the actual goal states were not ranked 
first all the time (i.e., in all steps) in their respective 
trajectory sets using the goal state’s reward 
policy, they ranked among the top 5 states, in at 

Figure 9. Percentage frequency of times (trajectories) 
each goal state (53, 132, 145, and 212) was ranked 
first at each step by their respective reward policy-
based posterior probabilities. The last step, step 16, is 
not shown because the authors have already reached 
their goal state. 
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least 90% of the steps per trajectory, as shown 
in Fig. 10. The rankings varied from 1 to 13 for 
state 53, 1 to 12 for states 132 and 145, and 1 
to 10 for state 212. From these results, we can 
generally expect that the posterior probabilities, 
computed using the actual goal state’s reward 
policy (Eq. (19)), will rank the goal state among 
the top 5 (out of the 1,276) states in at least 90% 
of the steps observed (on average per trajectory) 
in the training sets. This is the best ranking and 
frequency profile that can be achieved if an 
author were to follow the correct reward policy in 
a goal inference test. 

Figure 10. Cumulative frequency of inferred goal 
rankings for the states 53, 132, 145, and 212 based 
on their respective reward policy in trajectory sets 
𝒯𝒯53(a), 𝒯𝒯132 (b), 𝒯𝒯145 (c), and 𝒯𝒯212 (d).   

4.3.2. Goal inference via ranking the MDP states 
by their posterior probabilities in each training 

trajectory set using the reward policies of all goal 
states 

The above goal inference tests were performed 
on each trajectory set using the reward policy 
learned for that set. That is, the goal state 
associated with the reward policy and with the 
trajectory set used for inference test are both the 
same. If the goal inference was                            
performed with a reward policy other than that 
associated with the actual goal state of a 
trajectory set, then we should expect the ranking 
for the goal state associated with the reward 
policy to be lower. To verify this, we computed 
the posterior probabilities based on all four 
reward policies on all trajectory sets and 
determined the rankings (and their frequencies) 
for the goal state of each reward policy. As seen 
in Figs. 11 (a-d), the frequency of rankings 
among the top 1 to 10 states are generally 30 to 
40 % lower for all goal states inferred with reward 
policies different from that of the actual goal 
state. A few exceptions are noted in Fig. 11(c) 
and (d), where the percentage of times state 53 
ranked first was higher by 7.6% and 9% in 
trajectories whose actual goal states were 145 
and 212, respectively. Overall, the ranking results 
in Fig. 11 verify that only the reward policy for the 
actual goal state captures the correct behavior of 
authors in each trajectory set. For example, as 
shown in Fig. 11(a), state 53 ranked among the 

Figure 11. Cumulative frequency (%) of inferred goal rankings for the states 53, 132, 145, and 212 in trajectory sets 
𝒯𝒯53(a), 𝒯𝒯132 (b), 𝒯𝒯145 (c), and 𝒯𝒯212 (d), respectively. For each trajectory set, ranking was done by comparing the posterior 
probabilities of all states computed based on the reward policy learned for the trajectory set’s goal state. 
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top 10 states 100% of the time (steps per 
trajectory). State 132 ranked among the top 10 
states in less than 30% of the time. States 145 
and 212 ranked among the top 10 in less than 
49% and 42% of the time, respectively.  States 
132, 145, and 212 ranked 394th, 367th, and 634th, 
respectively at other times (not shown). Thus the 
ranking results in Fig. 11 (a) verify that only the 
reward policy for goal state 53 predicts the 
correct behavior of authors in the trajectory set 
𝒯𝒯53. Similar goal ranking results can be observed 
for the other trajectory sets, as shown in Figs. 11 
(b-d). 

4.3.3. Goal inference via ranking the four goal 
states in each training trajectory set by their 
respective reward policy-based goal probabilities 

To further validate the learned reward policies for 
goal inference, we determined which one out of 
the four states is the preferred goal state as an 
author progresses along a trajectory, by ranking 
the four states in decreasing values of their 
reward policy-based goal probabilities 
(calculated using Eq. (23)). For sake of illustration, 
we show in Fig. 12, the goal probabilities of two 
author trajectories that terminate at goal state 53. 
For the first author (Fig. 12(a)), state 53 is the 
most probable goal state after observing the first 
9 state transitions (steps) of the trajectory. In the 

first 8 states of the trajectory, it is not clear which 
of the four goal states, the author is pursuing. For 
the second author (Fig. 12(b)) we can see that the 
author is pursuing state 53 after two state 
transitions. 

Based on their respective reward-based goal 
probabilities, we ranked the four states in all 
trajectories of each set and counted how many 
times each state ranked first as the goal state, as 
more state transitions (steps) are observed along 
each trajectory. The results for each trajectory set 
are plotted in Figs. 13 (a-d). We can see in Figs. 
13(a) and 13(c) that the actual goal states, 53 and 
145, were inferred in at least 50% of the 
trajectories in their respective trajectory sets (𝒯𝒯53 
and 𝒯𝒯145 ), as the observed number of steps 

Figure 13. Percentage number of trajectories in sets 
𝒯𝒯53 (a), 𝒯𝒯132  (b), 𝒯𝒯145  (c), and 𝒯𝒯212  (d), in which each 
state (53, 132, 145, and 212) was inferred as the goal 
state, based on the respective state’s reward policy  

Figure 12. Goal probabilities of each state (53, 132, 
145, and 212) as more number of steps (state 
transitions) are observed along two author trajectories 
that terminate at state 53 ((a) and (b)). Goal inference 
for each state was based on its respective reward 
policy. The sequence of states in the two trajectories 
are listed above each figure. 
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varied from 1 to 15. State 132 was inferred as the 
goal state in the first step of only 30% of the 
trajectories in set 𝒯𝒯132  (Fig. 13(b)), but this 
percentage rose above 50 after 4 steps. In the 
case of trajectories in set  𝒯𝒯212, the state 212 is 
the inferred goal state in at least 50% of the 
trajectories after 5 steps of observation. This 
number rose to 100% when the author was one 
step away from the goal state. There were only a 
small percentage of trajectories (about 10 to 15 
% ) in 𝒯𝒯53, 𝒯𝒯132, and 𝒯𝒯145, where the goal state 
could not be inferred.  While the inference may 
be delayed in some cases, these results indicate 
that early inference of the actual goal state is 
possible, and the goal-directed behavior can be 
inferred using the reward policy-based goal 
probabilities of the four goal states. 

4.3.4. Goal inference via ranking the four goal 
states in previously unseen trajectories using 

their respective reward policy-based goal 
probabilities 

We performed the goal inference test on the six 
coin-author trajectories that were not included in 
set 𝒯𝒯53. This test will determine how well the IRL-
Bayesian goal inference approach will perform in 
inferring the coin state as the goal state out of the 
four states, 53, 132, 145, and 212. Using Eq. 
(23), we computed the probability of reaching 
each of the four states based on the number of 
steps observed in each coin-author trajectory. 
Figs. 14 (a-f) show the most likely goal state as 
more steps are observed along each of the six 
coin-author trajectories. As seen in Fig. 14, for 
some trajectories we can predict the coin state 
as the most likely goal state very early on in the 
author’s observed trajectory. For example, 

consider the trajectories in Figs. 14(a), 14(d), and 
14(e). For the trajectory in Fig. 14(a), state 132 
would be predicted as the goal state after 
observing the first two state transitions. However, 
after three state transitions, we can see the coin 
state as the most likely goal state for the 

Figure 14. Goal probabilities of each state (53, 132, 145, and 212) as more number of steps (state transitions) are 
observed along the six coin-author trajectories that terminate at state 53 (a-f). Goal inference for each state was based 
on its respective reward policy. The sequence of states in the six trajectories are listed above each figure. 
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remaining length of the trajectory. For the author 
trajectories in Figs. 14(d) and 14(e), the goal 
probability of the coin state is the highest over the 
whole length of each trajectory, and therefore, is 
the most likely goal state. For the trajectory in Fig. 
14(f), however, the coin state could not be 
inferred as the goal state. In other two trajectories 
(Fig. 14(b) and Fig. 14(c)), the inference for the 
coin state is delayed by 9 steps, but it is still 6 
steps away from reaching the coin state. For the 
trajectory in Fig. 14(b), it is not clear what the goal 
state is after observing 5 to 8 steps of the 
trajectory. But after observing 9 to 15 steps, we 
can see that the coin state is the predicted goal 
state. 

To quantify the accuracy of the IRL-based 
Bayesian goal inference approach, we counted 
the number of trajectories where the coin state is 
predicted as the goal state, as more steps are 
observed along each trajectory. As shown in Fig. 
15, the coin state is correctly inferred as goal 
state in at least 50% of the trajectories (3 out of 
6) after 1 to 8 steps of observation, and in 83% 
(5 out of 6) of the trajectories after 10 steps of 
observation. These results signify that with our 
IRL-based Bayesian formulation of goal 
probabilities, it is possible to infer whether an 
author is pursuing the coin state after observing 
a fraction of the author’s trajectory before the 
state is reached. 

5. Discussion 
The results for the OPAL case study provide a 
proof-of-concept demonstration of the IRL-
based Bayesian goal inference method to detect 
research activities of authors before they reach 
their goal state in a nuclear technology area. The 
case study focuses on a technology area related 
to the cold neutron source of the OPAL reactor, 
which may not directly relate to the building of the 
reactor, but indirectly points to its existence and 
operational use. The method used for the OPAL 
case study is, however, applicable to proliferation 

potential nuclear technologies, given the relevant 
datasets. Further research that goes beyond the 
scope of this paper is necessary to test the 
validity of the method for various technology use 
cases, assumptions, and variations in the 
method. In the following paragraphs, we discuss 
the different aspects of the method that can 
affect its performance and provide potential 
research directions to advance the method for 
applications in early detection of nuclear research 
activities. 

The results and the performance of the IRL-
based Bayesian inference method can vary 
depending on 1) how the topic weight vector 
space is defined, 2) which research articles are 
used in the dataset, 3) what grid spacing is used 
to discretize the topic weight vector space, 4) 
how the states and actions are defined for 
modeling the authors sequential decision-making 
process to publish in the coin state, 5) how much 
overlap in the state transitions exist among 
trajectories in a training set, and 6) how the 
reward function is defined. Future work may be 
directed towards understanding the effects of 
these factors. 

In this work, we used NMF-based topic modeling 
to define the topic weight vector space of all the 
publications in the dataset. Other topic modeling 
approaches may be utilized, for example, Latent 
Dirichlet Association (LDA) method and 
classification algorithms based on large language 
models (LLMs) that are specifically trained on 
nuclear research articles. We trained the NMF 
topic model using the abstracts and titles of 
29,196 Scopus records associated with the case 
study. These records comprised of a primary set 
of papers written by authors of the coin paper 
and a secondary set written by non-coin co-
authors of the primary paper set. Instead of 
training the NMF model on the whole set, one 
could also train the NMF model using only the 
primary set and then compute the topic weights 
for the papers in the secondary set. This NMF 
fitting method can be used to confine the topic 
space to the primary set, which we have found 
to reduce the noise-to-signal ratio by resulting in 
a fewer number of author trajectories terminating 
in the coin state for IRL training. To avoid any bias 
due to the primary set, we considered to model 
the topics using the whole set.  

In the case study, we used a single flagship 
publication of OPAL to define the coin state. The 
method can be extended to multiple coin states 
if there are multiple publications associated with 
the technology of interest. For the case with 
multiple coin states, the expert trajectory set 

Figure 15. Percentage number of trajectories in the six 
coin-author trajectory set, where each state (53, 132, 
145, and 212) was inferred as the goal state, based on 
the respective state’s reward policy. 
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used for IRL training will include trajectories 
terminating in any of the coin states. 

For the IRL framework, we defined the states 
based on the location of the publications in the 
discretized topic weight vector space and 
actions based on the year difference between 
two consecutive publications in an author’s 
publication sequence. There is no prescribed 
way to define actions for the author topic MDP. 
Future work may explore other ways of defining 
the actions and analyze grid discretization effects 
on the goal inference. Reducing the grid spacing 
will increase the number of grid cells (states) and 
lower the grid occupancy. This can reduce the 
overlap between author trajectories and create 
better separation of author behaviors, which in 
turn may improve the performance of the 
inference method. Higher resolution grids will 
increase the size of the MDP problem and will 
require high performance computing resources 
to perform the reward learning and inference 
calculations.  

In the OPAL case study, we computed the state 
and state-action rewards independent of the 
state and state-action features, respectively. If 
these features are known and are readily 
available, then the performance of the inference 
method may be improved by representing the 
rewards as a function of these features. The 
current lack of knowledge of these features can 
limit the accuracy of the goal inference. 

When applying the IRL-based Bayesian inference 
approach to infer whether an author will pursue 
the coin state, we must first convert the author’s 
partially observed publication sequence into a 
sequence of state-action-state transitions in the 
topic MDP environment. This is done first by 
computing the topic weight vectors of all the 
author’s publications using the trained NMF 
model and mapping them to states in the topic 
weight vector space. There could be states and 
actions in the author’s sequence, that are not 
part of the topic MDP environment if they were 
not previously observed. Therefore, we must 
expand the state and action spaces of the MDP 
to include previously unobserved states and 
actions, and then re-compute the transition 
probabilities based on all the state-action-state 
transitions observed in the author’s partially 
observed sequence, and subsequently re-learn 
the rewards for the respective goal states, 
including the coin state. This will also update the 
transition probabilities of previously observed 
state-action-state transitions, and possibly the 
rewards of previously observed states and state-
action pairs. If all the states and actions in the 
author sequence already exist in the MDP, we 

could choose not to update the transition 
probabilities and rewards. But as more data 
becomes available, it would be necessary to 
update the transition probabilities and re-train the 
rewards even if no new states need to be 
included in the MDP’s state space. In the OPAL 
case study, we included the transitions of the test 
trajectory set when computing the transition 
probabilities. 

Although we can incorporate previously unvisited 
states in the MDP before doing the inference, the 
prior goal probabilities given these states (are 
observed) will be zero, since these states were 
not present in any of the expert trajectory sets 
used for IRL training. The zero observed priors 
will result in zero goal probabilities for all tested 
goal states. When no observed goal priors exist 
for a new state, one could perform an inference 
with a uniform prior or impute a prior value based 
on proximity of the new state to previously visited 
states. The imputation method is like the open-
world assumption used by Krumm and Horvitz 
(2006) for driver destination prediction when a 
driver can visit locations (grid cells) that have not 
been visited before. For our application, one may 
use grid interpolation methods to impute the prior 
goal probability value for a previously unvisited 
state based on those of previously visited states 
that are within some L1 or L2 norm distance from 
the unvisited state in the topic grid. Alternatively, 
one may consider replacing the new state in the 
author trajectory with the closest of the previously 
visited states in the topic grid based on L1 or L2 
norm distance. Further research is necessary to 
test the validity and accuracy of using uniform 
and imputed goal priors when there are 
previously unvisited states in an author’s 
trajectory that is tested for goal inference. 

In the OPAL case study, we evaluated the 
performance of the method using trajectories 
that terminated at four different goal states 
(including the coin state). We evaluated how well 
the IRL-based reward policies captured the 
correct goal-directed behavior of authors in two 
ways: 1) by comparing the frequency of rankings 
based on the posterior probabilities of all states, 
computed using the reward policy for each goal 
state (see Fig. 11), and 2) by comparing the goal 
probabilities of reaching each of the four goal 
states given an observed fraction of the steps in 
a test trajectory (see Figs. 12 to 14). Based on 
the posterior probabilities that were computed 
using the reward policy for a goal state, we found 
that the actual goal state would be the inferred 
goal state among the top 5 states 90% of the 
steps in a trajectory of the training set. With a 
different reward policy, the frequency of rankings 
would drop by 30 to 50%. This suggested that 
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the reward policies capture the correct goal state 
behavior of authors. Based on the goal 
probability calculations, we found that the 
inference of the actual goal state can be early 
while in some cases delayed or unobservable. In 
practice, even though the actual goal state could 
be inferred five or six steps before it is reached, 
there is an uncertainty in finding the exact time of 
the event’s occurrence due to the inherent time 
lag between the inception of a research activity 
and its publication date. This uncertainty will have 
to be quantified based on additional technology 
use cases and larger validation tests.  

In this work, the length of the shortest coin-
author trajectory was used as the maximum 
length of the trajectories (𝐿𝐿 =  17 ) in the IRL 
training set. But the trained model can be applied 
for making inferences on trajectories of length 
smaller or greater than 𝐿𝐿. In future studies, it will 
be instructive to look at how different values of 𝐿𝐿 
for the training trajectory set might affect the 
inference results. It is noted that the IRL-based 
Bayesian inference method is suited for inferring 
the goal state before an author reaches the goal 
state, even after one or two steps of observation. 
This is useful when inference must be made for 
cases where the observed sequence is short due 
to delays in publication reviews or due to fewer 
number of publications as in small (covert) 
projects compared to large public research 
programs.   

Future work may be directed towards 
understanding what factors of the author 
trajectories limit the performance of the IRL-
based Bayesian goal inference. For example, 
inference can be limited by high overlap in the 
state transitions between author trajectories, and 
by the fact that authors can re-visit a state 
multiple times or can access any state from a 
given state. 

6. Conclusion 
We have developed an IRL-based Bayesian goal 
inference method to predict whether an author 
would pursue a research activity (goal state) in a 
nuclear technology area, given partial 
observations of their state transitions in a 
research topic weight vector space. Our case 
study results surrounding a civil nuclear activity 
suggest that it is possible to infer whether an 
author would publish on a technology-directed 
research activity before it has occurred. This 
work represents the first attempt at using nuclear 
research articles for early detection of 
technology-directed research activities of 
authors. We have discussed various research 
directions to build upon this work and to improve 

the performance of the inference method. The 
present work provides a foundational framework 
for early detection of technology-directed 
activities from scientific and technical sources of 
information, where the early detection problem is 
formulated as a sequential, decision-making 
problem. The IRL-based Bayesian goal inference 
method, combined with advanced computing, 
may be used to assess and monitor activities 
pertaining to early developmental stages of a 
nuclear technology or capability, which in turn 
can help to identify and prioritize activities with 
nuclear proliferation potential for further 
investigation.  
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