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Abstract
A goal of the International Atomic Energy Agency (IAEA) is 

to deter the spread of nuclear weapons through detection 

of nuclear material and technology misuse. Detecting 

diversion of nuclear material from large bulk handling 

facilities, such as a reprocessing plant, is a goal that can 

prove to be both challenging and resource intensive as it 

often requires destructive analysis of numerous samples 

taken from various locations across the facility. The IAEA 

has sought out methods to develop an integrated system of 

instrumentation and data processing to reduce this burden. 

The goal of this work is to leverage machine learning (ML) 

methods to improve the effectiveness and efficiency of 

safeguards by utilizing higher uncertainty measurements, 

such as process monitoring and Non-Destructive Assay 

measurements, which are not extensively used in traditional 

safeguards methods. This work is part of a series of two 

documents that consider the use of ML to improve one 

aspect of  safeguards, namely nuc lear mater ia l 

accountancy. This part considers unsupervised networks 

that are used to detect anomalous behavior that could be 

indicative of material loss. The unsupervised approach is 

shown to exceed traditional methodologies but only after 

several practical barriers have been accounted for and 

resolved.
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1. Introduction

The International Atomic Energy Agency (IAEA) was estab-
lished as an organization within the United Nations to pro-
mote the peaceful use of nuclear power [1]. One function of 
the IAEA is the implementation of safeguards for member 
states. The goal of safeguards is the timely detection of di-
version of significant quantities (SQs) of nuclear material for 
weapon purposes and deterrence of such diversion by the 
risk of detection. Nuclear material accountancy (NMA) is 
one method used by the IAEA to implement safeguards. 
NMA can be thought of as an audit of nuclear facilities that 
verifies reported quantities of material to ensure they have 
not been diverted. This is accomplished through several 
methods such as sampling and process monitoring. Safe-
guards can be further complemented by other systems 
such as containment and surveillance (C/S), particularly for 
large throughput facilities.

Existing NMA systems are well understood and have been 
implemented at numerous facilities. However, NMA often 
requires low uncertainty destructive assay (DA) measure-
ments to reach timeliness goals. These measurements are 
often time consuming and expensive as they must be per-
formed in an analytical laboratory. Other types of measure-
ments, such as process monitoring (PM) and non-destruc-
tive assay (NDA), can be used for remote monitoring to lead 
to lower costs, but often have relatively high uncertainties.  
Machine learning (ML) has revolutionized many fields and 
offers promise in safeguards related tasks like anomaly de-
tection. This work hypothesizes that ML could more effec-
tively leverage underutilized measurements with higher un-
certainties (e.g. NDA and PM) to improve costs associated 
with NMA.

2. Background

International safeguards are implemented to guard against 
diversion of significant quantities of nuclear material. This is 
defined by the IAEA as the approximate amount of nuclear 
material for which the possibility of manufacturing a nuclear 
explosive device cannot be excluded, which for plutonium 
is 8 kg [2]. One simple approach for the NMA component 
of international safeguards is item counting. Here, simple 
counting of discrete items is used to account for items that 
contain nuclear materials (e.g. fuel assemblies). When 
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             (2)

Where      

The terms above are defined as follows:

•   : Measured quantity of interest at location i at time t
•   : True quantity of interest (unobservable) at location i 

at time t
•   : Short-term systematic (i.e. epistemic) error 

•  Arises from measurement conditions or settings that re-
main unchanged from some period of time

•  Difficult to reduce

•  Example: Error due to calibration curve

•   : Random error (i.e. aleatory)

•  Varies unpredictable under repeated conditions

•  Can be reduced through repeated measurements

•  Example: Counting statistics

•   : Relative standard deviation

The random and systematic errors are assumed to be in-
dependent Gaussian random variables with zero mean and 

variances   and . Measurement errors are approxi-
mately normally distributed according to Equation 3. The 
specific values of the variances depend on the measure-
ment technology that is used. The IAEA has published the 
International Target Value (ITV) guidelines [5] which pro-
vides expected performance metrics and variances.

   
(3)

Measurement error plays an important role in the perfor-
mance of anomaly detection for material losses. Generally, 
a material loss can be thought of as a mean shift in the nor-
mally distributed material balance, as expressed in Equa-
tion 4. A key goal of NMA is to detect this shift.

  (4)

The body of statistics literature contains a range of different 
tests that can be used for change detection such as the 
one shown in Equation 4. However, all approaches are 
generally subject to limitations arising from measurement 
error as expressed in Equation 5. The probability of detec-
tion of a mean shift in a known, normal distribution (i.e. true 
positive) approaches the probability of false alarm (i.e. false 
positive) as the variance increases.

  
  (5) 

combined with statistics and random sampling, item ac-
counting is indeed the preferred method for facilities where 
material is most often found in discrete items. However, the 
focus of this work is large facilities where material is often in 
bulk form (e.g. powders or solutions) that require methods 
beyond simple item accounting [3]. The goal of this work is 
to develop machine learning approaches to improve mate-
rial accountancy of these large facilities. It is then important 
to accurately describe traditional methods such that the 
proposed machine learning based framework can be fairly 
compared to the current state-of-the-art.

2.1 Traditional Nuclear Material Accounting

Material Unaccounted For (MUF) [4] is a core component of 
NMA. MUF is a quantitative balance between flows of ma-
terial into and out of a facility. Usually, facilities will have 
multiple material balances that are divided up to reach cer-
tain timeliness goals or due to physical constraints within a 
facility (e.g., separate buildings). MUF is calculated at regu-
lar intervals defined by the material balance period (MBP). 
Subject matter expertise is used to determine both the 
number and size of material balances in addition to the ma-
terial balance period. The MUF calculation at a given time t 
with measurement locations i and total number of locations 
for a given measurement n is given by Equation 1.

  

(1)

The individual terms in the equation are as follows:

•  : Total input transfers

•  Transfer terms are often streams of material which should 
then be time integrated. The total transfer term would 
then become  

•  : Total output transfers

•   : Total of all inventories at time t

•   : Total of all inventories at time t-1

The expectation is that  when no material has 
been removed as all material has been accounted for. 
However, measurements always have some associated er-
ror, which causes a non-zero MUF even during normal 
conditions.

2.2 Measurement Error

No measurement is perfect and therefore is accompanied 
by some degree of uncertainty. Safeguards measurements 
are often characterized by a multiplicative error model as 
described in Equation 2.
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    (6) 

where

Recall that each individual material balance at time t is a 
function of the total current and previous inventories   

. This results in a temporally cor-
related material balance sequence. However, the Standard-
ized Independent Material Unaccounted For (SITMUF) 
transformation [7] can be used to decorrelate the sequence 
by accounting for the analytically determined covariance 
(using propagation of variance), Σ, and the conditional ex-
pectation with a few assumptions. Although not covered 
extensively here, traditional NMA relies on the residual be-
tween the observed MUF value and the conditional expec-
tation of MUF. A sequential test, namely Page’s trend test 
[8] [9], is used to detect trends in the material balance se-
quence residual. Under normal conditions, the SITMUF se-
quence should be approximately zero owing to a good 
conditional expectation. Material losses lead to poor ex-
pectations and larger residuals.

2.4 Machine Learning

Machine Learning (ML) refers to algorithms that perform a 
task without being explicitly programmed to do so. ML has 
seen a large surge in interest and is now embedded into 
many aspects of our daily lives. Although arguably less 
popular than domains such as computer vision, anomaly 
detection has benefited greatly from improvements in ML. 
Given the limitations described in previous sections, name-
ly the dependence of traditional NMA on measurement un-
certainty, it would be desirable to develop a ML framework 
that could sidestep the limitation. Specifically, a notable 

Put simply, smaller mean shifts relative to the variance are 
more difficult to detect as they often get lost in the noise. 
This is shown more concretely in Figure 1 where the detec-
tion probability for an arbitrary, fixed material loss is quanti-
fied for a fixed false alarm probability and various levels of 
measurement uncertainty.

Finding strategies for reducing the material balance uncer-
tainty has been a historical target for safeguards R&D given 
the impact on detection of material loss. One possible im-
provement would be to reduce the measured quantity size 
which would require a more frequent material balance peri-
od. This requires some optimization as too frequent materi-
al balance closures will result in higher false alarm probabil-
ities [6]. Improving measurement uncertainty, which also 

reduces material balance uncertainty via smaller   and , 
is currently what drives the use of expensive DA 
measurements.

2.3 Sequential Material Balance Testing

Discussion so far has focused on a single material balance 
at a specific point in time. However, timely detection of po-
tential material losses, a key goal of the IAEA, often re-
quires multiple sequential material balances. For example, 
consider the case of a single yearly material balance where 
a diversion is initiated near the beginning of the year. Con-
sequently, it would be months before the loss could be de-
tected. Sequential material balances also have the added 
benefit of reducing the uncertainty of any single balance 
while noting that there are some restrictions on frequency 
of material balance closure.

Each individual material balance is comprised of potentially 
many normally distributed measurements which imply the 
material balance will also be normally distributed. As each 
single material balance has some mean and variance, a se-
quence of MBs can be expressed as a multivariate normal 
in Equation 6.

Figure 1: Probability of detection shown as a function of uncertainty for a constant false alarm probability.
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used on SITMUF. For example, there have been prior at-
tempts to use autoregressive moving average (ARMA) [14]  
models with SITMUF in an effort to detect material loss [12]. 
A companion work has also considered the application of 
supervised deep learning anomaly detection to detect ma-
terial loss. That proposed work leverages a few examples 
of material loss in attempt to generally improve anomaly 
detection [15].

3. Problem Statement

Traditional statistics for nuclear material accountancy have 
a strong reliance on low measurement uncertainty to pro-
duce good probabilities of detection as shown previously in 
Figure 1. ML methods excel at finding subtle changes in 
signals that could indicate anomalous behavior. Ideally, a 
ML-based framework could utilize higher uncertainty (and 
potentially unattended) measurements to detect material 
loss at the same per formance level as traditional 
approaches.

3.1 Process Modelling

Obtaining data from actual nuclear facilities is often imprac-
tical due to cost and limited availability. The Separation and 
Safeguards Performance Model (SSPM) [16] [17] PUREX 
flowsheet has been used to provide synthetic training, test, 
and validation data for the techniques described in this 
work. The model was developed for systems-level analysis 
of safeguards design for various facilities including UREX+, 
PUREX, gaseous enrichment, fuel fabrication, electro-
chemical reprocessing, and more. The model uses MAT-
LAB Simulink to track elemental and isotopic material flows 
through various unit operations. Measurement blocks are 
used to simulate different types of measurements such as 
PM, NDA, and DA. Several common statistical tests used 
by the IAEA are also integrated into the model.

A PUREX SSPM flowsheet, based on a generic facility [18], 
is shown in  Figure 2. The grey blocks represent the pro-
cessing vessels throughout the plant and contain signifi-
cant detail about inventories, timing of operations, filling/
emptying sequences, etc. Signals connecting the blocks 
contain mass flow information for all nuclear material and 
bulk flows. The blue blocks represent measurement points 
which feed the traditional material balance calculation. The 
shaded regions (red, blue, and green) correspond to vari-
ous prediction regions where neural networks are used to 
learn the area’s behavior.

3.2 Baseline Machine Learning Approach

This work is motivated by the universal approximation theo-
rem [19] which states that an arbitrary-width single layer 
neural network can approximate any well-behaved func-
tion. It is important to note that the theorem does not com-
ment on the learnability of such well-behaved function. 

improvement would be the use of lower cost, but higher 
uncertainty process monitoring (PM) and non-destructive 
assay (NDA) measurements to detect material loss. Such a 
framework would require framing material loss as an anom-
aly detection problem. This contrasts with traditional NMA 
which attempts to detect diversions through direct quantifi-
cation of nuclear material (i.e. MUF).

There are many different anomaly detection algorithms that 
have been proposed as there is no universal solution for all 
problems. Consequently, this work represents only one po-
tential, but informed solution for applied ML to improve nu-
clear material accountancy. Specifically, this work consid-
ers supervised regression with an unsupervised anomaly 
detection problem. The supervised regression problem re-
quires the ground truth to learn an approximate function for 
some task. In this case, the regression task is to learn the 
behavior of parts of the PUREX reprocessing facility. Then, 
an unsupervised anomaly detection algorithm is used to 
detect unusual behavior. This class of anomaly detection 
algorithm does not require specific labelled examples of 
anomalies and instead relies on some proxy metric to de-
scribe normality. Unsupervised methods are particularly 
desirable for safeguards applications where it can be diffi-
cult or impossible to provide examples of all credible mate-
rial loss pathways. This also facilitates a more direct com-
parison with the existing benchmark (Page’s trend test on 
SITMUF) which also has no requirement with regards to ex-
amples of material loss.

In contrast, supervised approaches do require explicit, la-
belled examples of material loss, but do offer some poten-
tial advantages. For example, supervised approaches ena-
ble for direct optimization of material loss detection rather 
than specification of a proxy problem. Direct optimization 
through specific examples of material loss could also lead 
to better feature representation in supervised approaches 
leading to improved performance for known, high conse-
quence loss pathways. Supervised approaches may prove 
useful, but were not considered in this work.

2.4.1 Related Work 

Several previous works have attempted to develop im-
proved strategies for guarding against material losses by 
developing novel approaches. One example is the Multi-
Isotope Process Monitor (MIP) [10] wherein existing pro-
cess monitoring measurements were combined with pat-
tern recognition techniques in an attempt to develop more 
effective detection of material loss at large throughput facil-
ities. MIP used principal component analysis (PCA) [11] to 
reduce the dimensionality of gamma a spectra to learn new 
representations that express most of the signal variance. 
Then, PCA statistics such as Q-residual could be used to 
detect anomalies. The approach used by MIP was limited 
by the linear reduction in dimensionality. Other works [12] 
[13] have sought to improve on commonly used trend tests 
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predictions should no longer agree with observations. Fig-
ure 4 shows an example of this behavior wherein poor pre-
dictions are made during a window of anomalous behavior.

PUREX facilities have some operations that are time de-
pendent and are not well suited to traditional feed forward 
neural networks, which have no temporal capacity. Conse-
quently, the prediction step utilizes Long short-term memo-
ry (LSTM) [20] networks to complement traditional neural 
networks to capture the temporal properties of certain sig-
nals. For example, PUREX facilities have several mixing 
tanks that are dependent on material that has entered pre-
viously. Specific neural network architectures and data rep-
resentation have a strong impact on accurate predictions. 
This work found that the LSTM networks trained well and 
produced good predictions when temporal behavior is 
captured by passing a window of history as input.

Nonetheless the hypothesis of this work is that a neural 
network should be able to learn the behavior of a large 
throughput nuclear facility, specifically a PUREX reprocess-
ing facility. A material loss should appreciably change facili-
ty behavior such that the neural network will no longer pro-
vide accurate predictions. In turn, this will lead to 
discrepancies between observations and predictions that 
could be used to detect and possibly locate anomalous 
behavior (i.e. material loss). The hypothesis is summarized 
below in Figure 3.

The proposed unsupervised ML approach requires two 
steps. The first step is the prediction step where the neural 
network learns the behavior of a certain facility process (or 
area of processes) under normal conditions. Ideally, the 
neural network should be able to learn this behavior by way 
of the universal approximation theorem. Then, as the facility 
changes under anomalous conditions, the neural network 

Figure 3: Proposed setup for applied ML for NMA

Figure 2: SSPM PUREX Model. Several labelled and shaded regions represent different areas of MBA2 that were learned by individual 
neural networks (i.e. subunits).
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used here in combination with a classification window to 
define an alarm condition.

Isolation forest [21] is an unsupervised (requiring no exam-
ples of abnormal behavior) anomaly detection algorithm. 
The key intuition behind isolation forest is that anomalies 
should be few and different from normal data. The algo-
rithm proceeds by selecting an observation, randomly se-
lecting a feature, then randomly selecting a split value be-
tween the minimum and maximum. This process occurs 
recursively until the observation has been isolated from the 
larger dataset. Put simply, isolation forest will generate a list 
of logical criteria that make a particular observation appear 
unique. The criteria (i.e. splittings) can be represented as a 
tree structure. Gathering multiple sets of criteria results in a 

The difference between the prediction and observed value, 
which in this work will be referred to as reconstruction er-
ror, is arbitrary due to imperfect predictions even under 
normal conditions. For example, the neural network used in 
the prediction step can never calculate predictions with full 
accuracy which always results in some non-zero prediction 
error. A second step is required to translate these arbitrary 
reconstruction errors into alarms and probabilities of detec-
tion. Identification of anomalous behavior is complex as 
PUREX facilities have large multidimensional datasets that 
arise from measurements at multiple locations each with 
several features.  Instead of using a simple static threshold 
to detect anomalous behavior (e.g. alarm if a reconstruction 
error is greater than some scalar value), isolation forest is 

Figure 4: Neural network prediction during abnormal conditions.

Figure 5: Isolation forest uses recursive splitting to measure the abnormality of a point. This figure shows a normal point, xi, 
which takes many splits to isolate it from the larger population. In contrast, the abnormal point x0 requires fewer splits.  [21].
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increasingly sparse. Eventually, the algorithm will no longer 
classify anomalies as off normal as the anomaly magnitude 
decreases below the uncertainty bounds. This creates the 
need for a classification window. Off-normal classifications 
that are dense should represent an anomaly; therefore, a 
certain number of off-normal classifications in a particular 
window should cause an alarm. For example, if 10 out of 
the last 15 classifications are off-normal then the alarm 
condition has been reached.

It should be noted that there is some dependency between 
the classification window and contamination rate. Although 
this work used a 2% contamination rate, there are a range 
of possible values (1-6%) that still resulted in good detec-
tion levels. However, it is important to adjust both parame-
ters (contamination rate and classification window) in paral-
lel. Often, a higher contamination rate still resulted in the 
same detection probabilities, but higher false alarm rates. 
Consequently, the classification window requires adjust-
ment in conjunction with the contamination rate.

The proposed unsupervised machine learning approach 
can be summarized as follows:

• Stage 1: Neural networks are used to predict behavior of 
several locations within PUREX facility

• Stage 2a: Isolation forest uses reconstruction errors (i.e. 
prediction - observation) from all subunits as input to 
classify behavior as normal or off-normal

• Stage 2b: A threshold is applied over recent outputs from 
stage 2 (i.e. isolation forest). If there are many off-normal 
classifications recently then an alarm condition is reached

forest, hence the name isolation forest. The path length of 
an observation averaged over several random trees is used 
as a proxy for normality. Points with path lengths below a 
threshold (as abnormal points should take less logical crite-
ria to isolate) are considered anomalous. A visual intuition 
for isolation forest is shown in Figure 5.

Isolation forest has several hyperparameters that can be 
optimized through a grid search. These include the number 
of trees, maximum number of samples to train each esti-
mator, and maximum number of features to train each esti-
mator, which for this work, are set to 100, 15000, and 5 re-
spectively. An additional hyperparameter, namely, the rate 
of contamination in the training dataset (i.e. percent of data 
estimated to be anomalous), cannot easily be discovered 
through a grid search.

This work generally assumes a 2% contamination rate even 
though the entire dataset is normal. Effectively, this forces 
classification of 2% of the training dataset as anomalous. 
The normal points that are classified as anomalous repre-
sent observations with the highest applied errors (i.e. errors 
drawn from the distribution tails). As classifications alone 
are insufficient for detecting anomalous behavior (as some 
normal points are classified as off normal), an alarm criteri-
on on the classification is required. Using prior knowledge 
that material loss should be rare, it can be assumed that 
isolation forest will only infrequently produce false positives 
(i.e. points that are classified as abnormal but are normal). 
An example of isolation forest output for different anomalies 
is shown in Figure 6.

Note that there are some classifications being made as 
normal in the protracted anomaly shown in Figure 6. This is 
a function of a particular set of measurement realizations. 
As anomalies become more protracted and closer to the 
uncertainty bounds, the off-normal classifications become 

Figure 6: Isolation forest response to different anomalies. Class 1 is “Normal”, and class -1 is “Off-normal”.
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5. Identified Performance Factors

Real world application introduces several challenges that 
impact model performance. It is important to identify and 
resolve these issues given the high consequence environ-
ment of safeguards. The impact of several specific factors 
and traditional machine learning requirements are explored 
in the following.

5.1 Facility Discretization

Early work centered on training a single neural network that 
could learn the facility behavior at all measured locations. 
However, several unique facility operations prevented effec-
tive training of this large neural network. This resulted in the 
adoption of a discretized approach that segmented the fa-
cility into smaller regional neural networks. The following 
sections describe the primary facility regions (referred to as 
“subunits”) that resulted from the facility segmentation. This 
discretization of the facility had no observable performance 
impacts on the supervised regression task. That is, infor-
mation contained in each subunit was sufficient for the task 
of predicting the feature value at the next time step.

5.1.1 Subunit 1: Pulsed Separation Columns

The first segment of the facility encompasses a region from 
the head end, where dissolved nuclear fuel enters the pro-
cess, to the output of the decontamination column, where 
a purified plutonium solution leaves.  Figure 2 shows this 
area highlighted in red.

This area consists of several continuous processing opera-
tions that are straightforward for a neural network to learn. 
Specifically, a bi-layer LSTM with a running history of input 
material is used to predict the output of the decontamina-
tion columns. The length of the input history was selected 
to be 200-hours, which was based on empirical perfor-
mance as measured by mean-squared error (MSE) on the 
next time step prediction. The running history approach is 
expressed in Equation 7 where  is approximated by 
the bi-layer LSTM. Equation 7 denotes features as n and 
time as t. Use of LSTM layers is key to capture temporal 
dependencies between the inputs and outputs of this facil-
ity region.

1

  (7) 

5.1.2 Subunit 2: Pu Evaporator

The second segment of the facility encompasses a single 
unit operation, namely the evaporator, or “Pu Evaporator” 
as shown in the blue region of  Figure 2. This operation 

4. Experimental Setup

The first step of this anomaly detection framework is to 
generate several datasets from the SSPM PUREX model to 
train and test the two-stage machine learning pipeline. The 
SSPM runs simulated randomized input fuel entering the 
facility to reflect real-world operation resulting in additional 
material flow and inventory variation. In practice, actual fa-
cilities will have a distribution of possible inputs and outputs 
rather than a single fixed input and output which results in 
a more difficult anomaly detection problem.

Each dataset generated by the SSPM model contains 
about 100 different runs to obtain good performance sta-
tistics for traditional approaches to benchmark against and 
to ensure sufficient data is available for training the ma-
chine learning algorithms. The runs are 6480 hours long 
(270 days), which is about one operating year for a PUREX 
facility. Ideally, this machine learning approach will operate 
directly on signals of interest (e.g. gamma spectra), howev-
er, the computational overhead of calculating tens of thou-
sands of gamma spectra is large. Instead, this work con-
sidered mass with applied errors noting that this is not a 
direct evaluation of algorithmic performance. However, the 
use of mass to assess performance is a reasonable proxy 
as mass and gamma spectroscopy are related by a con-
stant. The dataset evaluated in this work contained features 
representing 134Cs, 137Cs, 154Eu, 241Am, and 241Pu in most 
cases. These features represent quantities that could real-
istically be observed at a PUREX facility.

Individual datasets for each location have a shape of [100 x 
6480 x 5] where 100 is the number of runs (operational fa-
cility years), 6480 is the time in hours (assumed to be 270 
operational days per year), and 5 is the number of features 
contained. The machine learning pipeline required several 
datasets to perform training and performance evaluations 
which is detailed below.

1. First stage (neural network prediction) is trained with a 
0.75/0.25 split for training and validation

2. First stage generated training dataset of normal 
residuals

3. Second stage (isolation forest) is trained

4. Final datasets reflecting different scenarios are used to 
evaluate performance

The final step in the pipeline is evaluation of a normal data-
set to determine a false alarm probability and several 
anomalous datasets to quantify detection performance. 
Specifically, four different anomalous scenarios of increas-
ing difficulty are considered. Although not fully described 
here note that scenario 1 is the easiest to detect while sce-
nario 4 is the most difficult. All datasets used in this evalua-
tion had errors applied according to the multiplicative error 
model described in Section 2.2 to represent real world 
conditions more accurately.
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normal operations, there are slight variations in the input 
and output batch size, which will impact the running aver-
age calculation. Rather than adjusting the running average 
feature by hand, the LSTM can learn to adjust it during 
training provided that the tank level measurement, which is 
a function of the input and output sizes, is provided.

5.2 Training data availability

Machine learning algorithms often require large training 
datasets to demonstrate adequate performance at test 
time. One important factor driving required training data is 
model size. As the number of trainable weights and biases 
increases so does the training dataset size requirements. 
Safeguards data is often difficult to obtain, and real-world 
constraints could lead to little available training data. There-
fore, it is important to consider how the dataset size im-
pacts performance using concrete metrics. This section ig-
nores measurement error (described in Section 5.4) to 
isolate the impact of available training data. As such, it is 
important to note these results would not reflect real-world 
results as there are other performance factors in addition to 
training data availability.

A parametric study is conducted to consider the impact of 
training dataset size on machine learning performance 
(probability of detection). It is important to note that both 
stages of the proposed approach (prediction and classifi-
cation) require training data. Further, as the prediction 
stage is used to train the classification stage, there is a 
compounded effect of reduced training data. The classifi-
cation stage will not only suffer from less training data, but 
poorer quality data as the prediction stage also degrades.

The baseline assumes 100 operational years of training 
data. This is chosen to be sufficiently large to ensure that 
training performance is driven by the machine learning al-
gorithm hyperparameters which enabled fine tuning. It 
should be noted that this is not simply 100 iterations of the 
same operational year (i.e. same pattern with different er-
rors applied), but unique simulations. There are a wide 

requires unique consideration as the signal is converted 
from continuous to discrete. During normal operation the 
evaporator accumulates solution until a setpoint is reached. 
Then, the evaporator reduces water content of the accu-
mulated solution and outputs a discrete batch of material 
that is processed in a following operation.

The previous approach of a running history (described in 
Section 5.1.1) as input for a LSTM network is not appropri-
ate for this area of the facility. For example, consider if the 
running history approach is used while the evaporator is 
accumulating solution and the setpoint had not been 
reached. The neural network would attempt to predict the 
previous output batch while the inventory reflects a differ-
ent product. This area of the facility uses fixed window of 
time that precisely map the accumulated solution to the 
corresponding product. Here, a single layer feed-forward 
neural network is used to predict the output product given 
the total accumulated material

5.1.3 Subunit 3: Pu Buffer Tank

The final segment consists of another single unit operation, 
a mixing tank, listed as “Pu Buffer Tank” in the green region 
of  Figure 2. This operation serves as a surge tank for the 
“Pu Accountability Tank”. During normal operation, this 
tank fills indefinitely, unless a surge signal is sent, in which 
case it empties. This behavior is regular and is shown in 
Figure 7. For this operation, the running history similar to 
what is described in Section 5.1.1 is used. A bi-layer LSTM 
network is again used; however, several hand-engineered 
features are required for the LSTM to make accurate 
predictions.

Note in Figure 7 that the tank output is a combination of 
two quantities: the previous batch of material to arrive in the 
tank and the residual tank inventory at the previous time 
step. Thus, a running average of the mixing tank inventory 
must be estimated.  This running average can be roughly 
approximated as . Additionally, the actual 
tank level measurement must also be included. During 

Figure 7: Mixing tank inventory
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generally increased with shrinking training dataset sizes 
(shown in Figure 9). A key assumption in this work is that a 
neural network can adequately learn facility operations. In-
creasing prediction errors from an inability to learn facility 
behavior results in a more difficult classification task.

It is interesting to note some subunits, which correspond to 
specific unit operations, are more susceptible to reduced 
training data than others. This phenomenon is not well un-
derstood and a target for future work. However, one possi-
bility is that more complex operations require more training 
data, which is supported by machine learning literature. Of-
ten data requirements scale with both algorithm size and 
task complexity. Subunit 1 is a relatively simple area of the 
facility (pulsed separation columns) that degrades little with 
decreased training data whereas subunit 2 is more com-
plex (evaporator) has a significant decrease in performance 
(i.e. higher errors).

5.3 Facility transients

Routine operations at bulk nuclear facilities can sometimes 
lead to transients that are not malicious in nature. These 
changes in behavior could make it difficult to detect anom-
alous behavior that occurs at the same time. However, a 
successful detection algorithm should be able to recover 
after the transient has ended and regain performance. Re-
covery of the proposed machine learning pipeline is evalu-
ated by generating datasets representative of two different 
facility transients. The performance is reported as the re-
construction error (i.e. prediction-observation), which has 
strong correlations to probability of detection.

Facility transients can be grouped into several categories 
despite the numerous different potential scenarios. This 
work considers two different types of the transient. The first 
includes scenarios that change facility behavior but do not 
result in a new baseline. An example in this category might 
be small changes to product composition as a result of a 

range of potential facility patterns due to the many combi-
nations of input fuel that could be selected that are ade-
quately captured in large datasets.

The parametric study considered the joint performance of 
reduced training data on the machine learning pipeline. 
That is, both stages are trained on reduced training data-
sets. For example, when 10 years of training data is used, 
the first prediction stage is trained on 10 years’ worth of 
data. Then, 10 years’ worth of predictions are generated 
and used to train the second stage. This essentially dou-
bles the amount of training data that would be required in 
practice. This study also incorporated early stopping during 
training of the prediction stage to ensure that any perfor-
mance losses are due to the inability of a smaller dataset to 
represent the test distribution rather than less training time. 
Results of this parametric study are shown in Figure 8.

Unsurprisingly, lower quantities of training data have a larg-
er impact on the more difficult to detect scenarios. These 
scenarios tend to be relatively large changes compared to 
the uncertainty arising from measurement error. The more 
difficult scenarios have much lower performance while see-
ing sharp drop offs at certain quantities of training data. 
This is largely due to inflexible alarm threshold. Recall that 
the alarm criteria specified in this work is defined by a cer-
tain number of off-normal classifications within a window of 
time. Small changes in performance resulting in fewer off-
normal classifications could result in large changes in alarm 
probabilities. For example, consider a threshold criterion of 
30 off-normal classifications, sampled at a rate of once per 
hour, in a 50-hour window. A small degradation in perfor-
mance that results in an average of 27 off-normal classifi-
cations when also sampled at the same rate in a 50-hour 
window translates to many fewer alarm triggers.

Poorer performance of the prediction stage also results in 
degraded detection performance for some of the subunit 
areas.  The average prediction error for normal behavior 

Figure 8: Probability of detection for several material loss scenarios with varied training dataset sizes. A probability of 1.00 
indicates a 100% probability of detection whereas a probability of 0.00 indicates no probability of detection.



25

ESARDA BULLETIN, No. 63, December 2021

The second transient represents a scenario where facility 
behavior is explicitly changed moving forward. For exam-
ple, this could be damage to a unit operation or represent 
sensor failure. Figure 11 shows the prediction error during 
and after a simulated transient. Again, desirable behavior is 
shown during the transient where there is a sharp increase 
in prediction error. However, the prediction performance 
does not return to pre-transient levels. This is somewhat 
expected as the training data, which is represented to the 
algorithm as normal, no longer accurately represents the 
facility. Action would be required to adjust the prediction 
stage such that it reflects the updated normal conditions.

Both types of facility transients result in poor prolonged 
prediction performance, which would negatively impact 
probability of detection. While problematic, there exist 
some strategies within the machine learning literature to re-
train algorithms in an online environment. Future work 
should target strategies to mitigate the impact of facility 
transients which are likely to occur in real-world scenarios.

vessel leak. The second category includes scenarios that 
do significantly alter facility which results in a new baseline. 
Examples here would include transients that cause surge 
vessels to have a new equilibrium or changes to operation-
al timing.

The first transient considered is in the first category where 
there is a temporary change in the behavior of the particu-
lar area. Figure 10 shows changes in the neural network 
prediction during and after this transient. The prediction is 
desirable during the transient in that the prediction error is 
high compared to normal behavior. However, after the tran-
sient has passed, the prediction no longer returns to a 
baseline performance level. This appears to indicate that 
the training data no longer represents conditions in the fa-
cility and that there has been some prolonged change in 
facility behavior. This is problematic as anomaly detection 
performance in the period of time after the transient will 
decrease.

Figure 9: Impact of training data on prediction performance.

Figure 10: Prediction error of a neural network for a single isotope during a facility transient that changes the baseline of a facility section.
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The mean squared objective is essentially the negative log-
likelihood (i.e. cross-entropy) between the empirical distri-
bution and a Gaussian model (i.e. the learned distribution, 
assumed to be normal). Effectively, the prediction stage 
tries to learn a function that produces an output distribution 
as close as possible to the training distribution. Then, under 
anomalous conditions, the learned distribution is no longer 
representative indicating that a mean shift has occurred.

Earlier, this work showed that increases in material balance 
uncertainty reduces the probability of detection for a mate-
rial loss. A similar phenomenon is at play for the mean shift 
detection problem. Increases in a distribution’s variance re-
duces the probability that a mean shift can be detected. 
This can be shown using a variety of approaches including 
a simple application of Bayes’ theorem to a more complex 
analysis of variance (i.e. ANOVA) procedure.

The previous section showed that there is a strong de-
pendence on sufficient large training datasets to achieve 
satisfactory anomaly detection performance. It is reasona-
ble to assume, given the limited amount of safeguards 
data, that multiple measurement campaigns might be re-
quired to create a dataset of sufficient size. Each measure-
ment campaign will have its’ own unique set of calibrations 
(i.e. systematic error), that when aggregated together, will 
result in a larger variance than any individual dataset as 
shown in Figure 12.

The aggregation of multiple measurement campaigns re-
sults in the machine learning pipeline essentially learning 
variation due to measurement error in addition to facility 
behavior. This leads to lower anomaly detection perfor-
mance than traditional statistical methods used for safe-
guards. This phenomenon is particularly nuanced and dis-
cussed at length in a companion work [22].

5.4 Measurement Error

Measurement error is a reality for the deployment of any re-
al-world NMA system. Traditional NMA systems must im-
plement specific strategies to detect losses when meas-
urements are contaminated with error. For example, the 
SITMUF transformation can mitigate some impacts of 
measurement error by converting a MUF sequence to an 
uncorrelated sequence. Many common anomaly detection 
algorithms in the machine learning literature are prone to 
failure when used with error contaminated data. There are 
also few documented strategies on mitigating measure-
ment error as most literature focuses on bias in supervised 
learning settings. For example, fairness which is an impor-
tant area of research, seeks to remove human bias from 
collected datasets. However, this is fundamentally different 
from the multiplicative error model encountered in 
safeguards.

Fundamentally, detection of material loss (or any anomaly 
at all) is a mean shift detection problem. That is, given a 
normal distribution of features, can a shift in population 
mean be detected? This intuition forms the basis of several 
common anomaly detection algorithms. The proposed ma-
chine learning pipeline here also relies on a similar premise. 
Consider the training objective for the prediction stage; pre-
dict the facility behavior given some input. This is achieved 
through a mean squared error objective which attempts to 
minimize the difference between training examples and the 
prediction. It can be shown that the relationship in Equation 
8 is true.

(8) 

Figure 11: Prediction error of a neural network for a single isotope during a facility transient that changes facility behavior.
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multiple combinations of windows and total classifications 
that resulted in a 5% FAP. The difference for most losses is 
insignificant but caused a 23% difference in detection 
probability for scenario 1, which is the most abrupt scenar-
io. This reflects threshold where the total number of classifi-
cations is larger than the duration of the abrupt loss.

6. Ideal results

The previous section identified several factors that require 
attention to ensure adequate performance of the machine 
learning pipeline. Ideal (optimistic) performance can be 
quantified by accounting for these factors. The overall per-
formance of the machine learning algorithm is compared to 
the traditional Page’s trend test on SITMUF under near 
identical conditions in Figure 14. The ideal conditions used 
for Figure 14 made several assumptions:

•  Sufficient training data available

•  Optimal threshold selection

•  No facility transients

5.5 Threshold selection

Recall that the second stage of this proposed machine 
learning approach requires some threshold for an alarm cri-
terion. Isolation forest generates class labels when given 
the reconstruction error from the prediction stage. Howev-
er, due to variation caused by measurement error, the clas-
sifications will never be perfect. Intuitively, material losses 
should generate more off-normal classifications (i.e. true 
positives) in each period as off-normal classifications made 
for normal observations (i.e. false positives) will be random-
ly distributed. One potential alarm condition would be re-
quiring a specific number of off-normal classifications in a 
particular window of time. A common metric to tune safe-
guards thresholds (often defined by regulations to be 5%) is 
the false alarm probability (FAP, i.e. false positive rate).

Threshold optimization is underdefined in this case as there 
is one constraint (5% FAP) and two unknowns (window size 
and total classifications). This leads to multiple possible so-
lutions for threshold criteria. In practice this has some im-
pact on detection of abrupt material loss as shown in Fig-
ure 13. A parametric study is conducted that considered 

Figure 13: Probability of detection for several loss scenarios with 
varied thresholds.

Figure 14: Detection probabilities for various loss scenarios.

Figure 12: Probability density functions for multiple normal datasets.
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crucial for real world performance. Several important find-
ings are summarized below:

• Data representation is important to achieve adequate 
training performance

• Data availability has a significant impact on performance 
- Some facility operations are easier to learn than others 
and thus less susceptible to smaller training datasets

• Online training will likely be required after facility 
transients

• Measurement error has a significant negative impact on 
anomaly detection performance of the unsupervised ma-
chine learning approach

• The proposed alarm criteria are inflexible and can cause 
result in poor performance when not properly optimized. 
- A better criterion should be developed in future work.

Additionally, the generalization of the proposed pipeline 
was not studied in depth here. However, it is hypothesized 
that this approach will exhibit poor generalization even for 
facilities of the same type (I.e. other PUREX reprocessing 
facilities). The behavior learned through training will likely 
vary from facility to facility due to differences in equipment 
and facility layout. Applicability of common mitigation strat-
egies for small datasets, such as transfer learning [23], to 
this problem remain unknown. 

This work shows that unsupervised machine learning has 
the potential to out-perform traditional safeguards, but sev-
eral requirements must be satisfied. There are several chal-
lenging limitations that are raised which make it unlikely that 
ML will wholly replace traditional safeguards in the near fu-
ture. Data driven systems will likely complement existing 
safeguards systems until future work can resolve important 
barriers identified here.

Measurement error has many potential sources, and as 
such, could be difficult to resolve in real-world deployment 
scenarios. Consequently, it is not surprising that large por-
tions of R&D for safeguards target reductions in measure-
ment error.  As there are no obvious data driven solutions 
to reduce the measurement error, Figure 15 considers the 
performance of both traditional statistical methods for safe-
guards and the unsupervised machine learning pipeline un-
der “Uncalibrated” and “Calibrated” measurement condi-
tions. Uncalibrated conditions are similar to current 
practices at facilities where sensors are placed and meas-
ured independently. The calibrated condition considers an 
experimental procedure wherein sensors are calibrated 
against each other (i.e. cross-calibrated). Here, the system-
atic errors for each sensor are the same non-zero value. 
For example, instead of having one sensor +1% biased and 
another being -2% biased, all sensors are biased at the 
same level.

The simulated calibration procedure has a large impact on 
the performance of the machine learning approach. With-
out it, performance is worse than traditional safeguards 
and very poor for most scenarios. It is interesting to note 
that the traditional safeguards approaches do not signifi-
cantly benefit from this calibration procedure. This likely 
arises from implementation details for each approach. The 
machine learning algorithm is comparing signals from dif-
ferent locations in the facility, which is sensitive to mis-
matched biases specifically (i.e. large differences between 
sensors). However, the traditional safeguards approach is 
focused on quantifying MUF, which is sensitive to error in 
general.

7. Conclusions

This work proposed an unsupervised machine learning 
pipeline consisting of two steps to improve safeguards of 
bulk facilities. Several practical performance factors are 

Figure 15: Detection probabilities for various loss scenarios.
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