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Abstract:

Approximate Bayesian Computation (ABC) is an inference 
option if a likelihood for measurement data is not available, 
but a  forward model is available that outputs predicted 
observables, such as gamma counts, for any set of specified 
input parameters, such as item mass. This paper reviews 
ABC and illustrates how ABC can be applied in safeguards 
metrology. A  key aspect of metrology is uncertainty 
quantification (UQ), approached from physical first principles 
(“bottom-up”) or approached empirically by comparing 
measurements from different methods and/or laboratories 
(“top-down”). Although ABC is not yet commonly used in 
metrology, an example using enrichment measurements is 
used to illustrate potential advantages in ABC compared to 
current bottom-up approaches. Using the same example, 
ABC is also shown to be useful in top-down UQ. And, the 
example shows good agreement between bottom-up and 
top-down measurement error relative standard deviation 
(RSD) estimates, while also allowing for the effects of item-
specific biases. As a diagnostic, in applications of ABC, the 
actual coverages of probability intervals are compared to the 
true coverages. For example, if an ABC-based interval for 
the true measurement RSD is constructed to contain 
approximately 95% of the true values, then one can check 
whether the actual coverage is close to 95%. It is shown that 
one advantage of ABC compared to other Bayesian 
approaches is its apparent robustness to miss-specifying 
the model while maintaining good agreement between the 
nominal and the actual coverage.

Keywords: approximate Bayesian computation; metrolo-
gy; non-destructive assay; uncertainty quantification

1. Introduction

Nuclear safeguards aim to verify that nuclear materials are 
used exclusively for peaceful purposes. To ensure that 
States honor their safeguards obligations, measurements 
of nuclear material inventories and flows are needed. Sta-
tistical analyses used to support conclusions require UQ, 
usually by estimating the RSD in random and systematic 
errors associated with each measurement method [1-9].

To monitor for possible data falsification by the operator 
that could mask nuclear material diversion, paired 

(operator, inspector) data are assessed. These paired data 
are declarations usually based on measurements by the 
operator, often using destructive assay, and measure-
ments by the inspector, often using non-destructive assay 
(NDA). Statistical tests are applied one-item-at-a-time, and 
also to assess for a possible trend by computing the over-
all difference of the operator-inspector values using the 

D  statist ic, one version of which is def ined as 
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 where j  indexes the sample items,Oj  is 

the operator declaration, I j  is the inspector measurement, 
n is the verification sample size, and N is the total number 
of items in the stratum. The D statistic and the one-item-
at-a-time tests rely on estimates of operator and inspector 
measurement error RSDs that are based on top-down UQ 
from previous inspections [1,2]. Inspector NDA measure-
ments are made using portable neutron and gamma de-
tectors taken into the facility, which involves challenges for 
UQ (Section 3). Such an assessment depends on the as-
sumed measurement error model (for example, if the er-
rors scale with the true value then a relative error model is 
appropriate) and associated uncertainty components, so it 
is important to perform effective UQ [2,3,4,8,9].

Another quantitative assessment in safeguards that re-
quires UQ involves the material balance defined as MB = 
Tin + IBegin – Tout – Iend, where T is transfers and I is inventory. 
The covariance ΣMB  of a sequence of n material balances 
is an n-by-n matrix with the MB variances on the diagonal 
and the covariances between pairs of MBs on the off-di-
agonals. The entries in ΣMB  are estimated using measure-
ment error variance propagation applied to estimates of 
the RSDs in random and systematic error variances for 
each of the operator’s measurement methods [1, 4-7].

MB evaluations and verification data assessments rely on 
estimates of measurement error RSDs. Historical paired 
(operator, inspector) data is used for top-down UQ, apply-
ing analysis of variance (ANOVA), to estimate RSDs. Bot-
tom-up UQ propagates errors in all key steps of the assay 
to predict the RSD in the estimated nuclear material mass; 
this error propagation is similar to that used in the guide to 
expression of uncertainty in measurements [GUM, 10]. It is 
common for RSD estimates from bottom-up UQ to be 
smaller than those from top-down UQ [2, 9]. Currently, 
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a gap between bottom-up and top-down RSD estimates 
does not directly impact inspectors’ conclusions, because 
the top-down RSD estimates are used to set alarm thresh-
olds in MB evaluations and verification data assessments. 
However, only when there is good agreement between 
bottom-up and top-down UQ can the potential to improve 
an NDA method be fully understood.

Because MB evaluations and verification data assessments 
rely on top-down estimates of random and systematic (see 
Section 2) measurement errors, top-down RSD estimates 
set a target for bottom-up UQ. One step to improve UQ is 
to improve bottom-up UQ so that its RSD estimates are in 
better agreement those from top-down UQ [2, 9]. Another 
step to improve UQ is to estimate the uncertainty in the 
RSD estimates so that any gap between bottom-up and 
top-down RSD estimates can be assessed for significance 
(which is not currently done in practice). Toward the goal of 
improving UQ, this paper introduces ABC for both bottom-
up and top-down UQ. Any Bayesian approach provides 
a probability distribution for the unknown model parame-
ters, which are the unknown random and systematic RSDs 
in this context, so the uncertainties in the RSD estimates 
are known. And, ABC has two potential advantages over 
other Bayesian methods in this context. First, ABC appears 
to be more robust to small or modest misspecifications of 
the data likelihood. Second, ABC can easily accommodate 
comprehensive bottom-up UQ, including effects such as 
uncertainties in nuclear data and model-based adjustment 
of test items to calibration items [9].

This paper is organized as follows. Sections 2 and 3 de-
scribe top-down and bottom-up UQ, respectively. Section 
4 describes approximate Bayesian computation (ABC [11-
13]). Section 5 applies ABC to top-down and bottom-up 
UQ for safeguards for NDA using the enrichment meter 
principle (EMP [14-16]). Section 6 is a summary.

2. Top-down UQ applied to paired (operator,
inspector) data

An effective measurement error model must account for 
variation within and between groups, where a group is, for 
example, a calibration or inspection period. A typical mod-
el for relative errors for the inspector (I) (and similarly for the 
operator O) is

I S Rjk jk Ij Ijk= + +µ ( ),1 (1)

where I jk  is the inspector’s measured value of item k (from 
1 to n) in group j (from 1 to g), is the true but unknown val-

ue of item k from group j, R NIjk RI~ ,0 2δ( ) is a random error

of item k from group j, S NIi SI~ ,0 2δ( ) is a short-term sys-
tematic error in group j. To better understand Eq. (1), Fig. 1 
plots 10 simulated values in each of 3 groups of 
d O I O= −( ) /  values. Section 5.1 contains more informa-
tion regarding Fig. 1.

The measurement error model sets the stage for applying 
ANOVA with random effects [17-19]. Neither RIij

 nor SIi
 are

observable. However, for various types of observed data, 
one can estimate their respective variances δRI

2  and δSI
2 . For 

the error model in Eq. (1), the standard deviation σD  of D , 
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2 2 2= + , so alarm thresholds for D  that correspond 

to user-specified false alarm probabilities can be selected. 
Similarly, the one-at-a-time tests also require estimates of 
δR

2 and δS
2, which are obtained by applying random one-

way ANOVA to real paired difference data that are as-
sumed to follow Eq. (1). Reference [3] evaluates impacts on 
alarm probabilities of using estimates of δR

2 and δS
2 instead 

of the true quantities In some safeguards contexts such as 
MB evaluation, the estimates of δR

2 and δS
2 must be parti-

tioned into δ δRO RI
2 2 and  and δ δSO SI

2 2 and , respectively [2, 3]. 
Note from the expression for σD  that δR

2 is divided by the 
number of observations ng , and that δS

2 is divided by the 
number of periods g, which makes sense according to the 
error model (1) and in view of Figure 1.

Error model (1) does not include long-term systematic er-
ror. The short-term systematic error is assumed to change 
between inspection periods [14,19] due to re-calibration 
and possibly other effects. In practice, there are some-
times tests for long-term systematic error, where long-term 
means as long as (or longer than) the data evaluation peri-
od, which is typically multiple inspection periods or years. 
Any long-term error is investigated and will be assumed in 
this paper to be zero.

3. Bottom-up UQ

NDA uses calibration and/or modelling to infer nuclear ma-
terial (NM) mass using detected radiation such as neutron 
and gamma emissions. Three issues in UQ for NDA are:

1. NDA is applied in challenging settings because the de-
tector is brought to the facility where ambient condi-
tions can vary over time, and the items are often heter-
ogeneous in some way. Because of such challenges,
dark uncertainty [20] can be large, as is evident when-
ever bottom-up UQ predicts smaller RSD than is ob-
served in top-down UQ.

2. There is no UQ guide for NDA that is analogous to the
GUM. But, the GUM is typically followed for the error
variance propagation steps in UQ, and each NDA
method has a specific and documented implementa-
tion of UQ (for example, ASTM C1514 [15] for the EMP).

3. NDA is often used when test items differ substantially
from calibration items; therefore, the concept of item-
specif ic bias is important, and is addressed in
Section 5.
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In NDA, error variance propagation is used as a compo-
nent of bottom-up UQ by propagating errors in inputs. 
Bottom-up UQ is often approached by using the GUM’s 
measurement equation, expressed as

	 Y f X X XN= ( , ,..., )1 2 � (2)

for measurand Y  and inputs X X XN1 2, ,..., . The GUM ap-
plies the delta method to Eq. (2) to propagate error vari-
ances in the Xi  to estimate the standard deviation in Y. The 
input quantities can include, for example, measured count 
rates, estimates of calibration parameters or other measur-
ands, such as measured values in steps an assay method. 
The delta-method assumes that f X X XN( , ,..., )1 2  in Eq. (2) 
can be well approximated by a first-order Taylor series ex-
pansion around the mean values of each, and then the lin-
ear approximation to f X X XN( , ,..., )1 2  can be used to esti-
mate σY

2 given estimates of the variances for each Xi  (and, 
correlations between the can be accommodated). If the 
first-order Taylor series is not sufficiently adequate, the 
GUM recommends Monte Carlo simulation. Note that 
Eq.  (2) implies that Y  is random, so the GUM implicitly 

adopts a Bayesian viewpoint (Section 4) without explicitly 
stating a prior distribution for Y [21, 22].

Recently, the NDA community is recognizing a need for 
more comprehensive bottom-up UQ that thoroughly ad-
dresses uncertainty in model-based adjustments of test 
items to calibration items [2,9]. Toward that goal, several US 
national laboratories are collaborating on a multi-year pro-
ject to improve UQ for NDA and the standard committee 
ASTM C26.12 is another group also working on UQ for 
NDA. One possible outcome of these collaborations is bet-
ter guidance on bottom-up UQ for calibration data that al-
lows for both errors in predictors and for item-specific bias. 
It is also possible that approaches for better bottom-up UQ 
will be provided in the next version of the GUM [21, 22].

4.	 ABC

Bayesian ANOVA such as could be applied to data gener-
ated from Eq. (1) has been studied [17], and Bayesian meth-
ods are slowly being adopted in metrology [9,10,21,22]. 
However, Bayesian ANOVA using ABC has not been well 
studied. In any Bayesian approach, prior information 

Figure 1: Example (simulated) of 10 d O I O= −( ) /  values in each of 3 groups.
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regarding the magnitudes and/or relative magnitudes of δRI
2  

and δSI
2  can be provided [21-23]. If the prior is “conjugate” 

for the likelihood, then the posterior is in the same likeli-
hood family as the prior, in which case analytical methods 
are available to compute posterior prediction intervals for 
quantities of interest. In order that a wide variety of priors 
and likelihoods can be accommodated, modern Bayesian 
methods do not rely on conjugate priors, but use numerical 
methods to obtain samples of δRI

2  and δSI
2  from their approx-

imate posterior distributions [23]. For numerical methods 
such as Markov Chain Monte Carlo [23], the user specifies 
a prior distribution for δRI

2  andδSI
2 , and a likelihood (which 

need not be normal). ABC does not require a likelihood for 
the data (but this section provides clarification regarding 
the need for a likelihood in this NDA context), and, as in any 
Bayesian approach, ABC accommodates constraints on 
variances through prior distributions [11-13, 24-26].

The “output” of any Bayesian analysis is the posterior dis-
tribution for each model parameter, and so the output of 
ABC for data generated from Eq. (1) is an estimate of the 
posterior distributions of δRI

2  and δSI
2 . No matter what type 

of Bayesian approach is used, a well-calibrated Bayesian 
approach satisfies several requirements. One requirement 
is that in repeated applications of ABC, approximately 95% 
of the middle 95% of the posterior distribution for each of
δRI

2  and δSI
2  should contain the respective true values. That 

is, the actual coverage should be closely approximated by 
the nominal coverage. A second requirement is that the 
true standard deviation of the ABC-based estimates of δRI

2  
and δSI

2  should be closely approximated by the standard 
deviation of the ABC-based posterior distributions of δRI

2  
and δSI

2 . Inference using ABC can be briefly summarized as 
follows:

ABC can be described using this high-level algorithm description:

ABC Inference

For i in 1, 2, …, N

1.  Sample θ  from the prior, θ θ~ ( )fprior .

2.  Simulate data y’ from the model ′y P y~ ( | )θ .

3. � Denote the real data as y. If distance d S y S y( ( ), ( )) ,′ ≤ ε θ accept  as an observation from fposteriorr ( | ).θ y

Experience with ABC suggests that the ABC approxima-
tion to fposterior ( | )θ y  improves if step (3) is modified to in-
clude a weighting function so that values of θ θ~ ( )fprior  that 
lead to very small values of the distance d S y S y( ( ), ( ))′  are 
weighted more heavily in the estimated posterior [24,25].

In ABC, the model has input parameters θ and outputs 
data y(θ) and there is corresponding real data yobs. For ex-
ample, the model could be Eq. (1), which specifies how to 
generate synthetic I (or O) data, and does require a likeli-
hood; however, the true likelihood used to generate the 
data need not be known to the user. Synthetic data is gen-
erated from the model for many trial values of θ, and trial 
θ values are accepted as contributing to the estimated 
posterior distribution for θ| yobs if the distance d y yobs( ( )), θ
between yobs  and y ( )θ  is reasonably small. Alternatively, 
for most applications, it is necessary to reduce the dimen-
sion of yobs to a small set of summary statistics S yobs( ) 
and accept trial values of θ  if d S y S yobs( ( ( )),( ) <θ ε , where 
ε is a user-chosen small threshold near 0. Here, for exam-

ple, y d
O I

Oobs = = −
 data in each inspection group, and 

S yobs( ) includes within and between groups sums of 
squares Specifically, the ANOVA-based estimator of δRI

2  

in  Eq. (1) is ˆ { ( ) }δR
k
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. The quantities δ̂R

2 

and δ̂S
2 are therefore good choices for summary statistics 

for ABC. Recall that because trial values of θ are accepted 
if d S y S yobs( ( ( )),( ) <θ ε , an approximation error to the pos-
terior distribution arises that several ABC options attempt 
to mitigate. Recall also that such options weight the ac-
cepted θ values by the actual distance d S y S yobs( ( ( )),( ) θ  
(abctools [25] in R [26]).

To summarize, ABC applied to data following Eq. (1) con-
sists of three steps: (1) sample parameter values of δR

2 and 
δS

2 from their prior distribution pprior(θ); (2) for each simulat-
ed value of θ  in (1),simulate data from Eq. (1); (3) accept 
a fraction of the sampled prior values in (1) by checking 
whether the summary statistics computed from the data in 
(2) satisfy d S y S yobs( ( ( )), .( ) <θ ε   If desired, aiming to im-
prove the approximation to the posterior, adjust the ac-
cepted θ   va lues on the bas is  of  the ac tua l 
d S y S yobs( ( ( )),( ) θ  value. ABC requires the user to make 
three choices: the summary statistics, the threshold ε , and 
the measure of distance d. Reference [11] introduced 
a method to choose summary statistics that uses the esti-
mated posterior means of the parameters based on pilot 
simulation runs. Reference [12] used an estimate of the 
change in posterior pposterior(θ) when a candidate summary 
statistic is added to the current set of summary statistics. 
Reference [13] illustrated a method to evaluate whether 
a candidate set of summary statistics leads to a well-cali-
brated posterior, in the same sense that is used in this pa-
per; that is, nominal posterior probability intervals should 
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have approximately the same actual coverage probability, 
and the posterior variance should agree with the observed 
variance in testing.

5.	 EMP Example

The mass of 235U in an item can be estimated by using the 
measured net weight of uranium U in the item and the meas-
ured 235U enrichment (the ratio 235U/U). Enrichment can be 
measured using the 185.7 keV gamma-rays emitted from 235U 
by applying the EMP. The EMP aims to infer the enrichment 
by measuring the count rate of the strongest-intensity direct 
(full-energy) gamma from decay of 235U, which is emitted at 
185.7 keV [14-16]. The EMP assumes that the detector field of 
view into each item is identical to that in the calibration items 
(the “infinite thickness” assumption), that the item is homoge-
neous with respect to both the 235U enrichment and chemical 
composition, and that the container attenuation of gamma-
rays is the same as or similar to that in the calibration items so 
that empirical correction factors have modest impact and are 
reasonably effective. If these three assumptions are met, the 
known physics implies that the enrichment of 235U in the U is 
directly proportional to the count rate of the 185.7 keV gam-
ma-rays emitted from the item. It has been shown empirically 
that under good measurement conditions, the EMP can have 
a random error RSD of less than 0.5 % and a long term bias 
of less than 1 %, depending on the detector resolution, stabil-
ity, and extent of corrections needed to adjust items to cali-
bration conditions. Some bottom-up UQ examples for the 
EMP in [14,16,19] have estimated random error RSD ranging 
from less than its 0.5% target to approximately 1.0% (be-
cause of item-specific biases arising due to container thick-
ness variations and other effects,) but less than the 2% to 4% 
reported from corresponding top-down UQ for the 235U mass 
in UO2 drums. Also, top-down UQ reports total error RSD 
(random and short-term systematic) of 4% to 20 % for some 
items analyzed in [19] (the RSD tends to be larger for smaller 
values of enrichment).

The known nominal enrichment in each of several stand-
ards can be fit to observed counts in a few energy channels 
near the 185.7 keV energy as the “peak” region and to the 
counts in a few nearby energy channels below and above 
the 185.7 keV energy but outside the peak area to estimate 
background (two-region EMP method), expressed as

	 Y N RY= +β1 � (3),

where Y  is the enrichment, N  is the peak count rate near 
185.7keV, RY  is random error and β1 is a calibration constant. 
Figure 2 is an example low-resolution (NaI detector) gamma 
spectrum near the 185.6keV region. The gross count and the 
two background ROI counts can be combined into one net 
count, resulting in one predictor as in Eq. (3). For example, if 
the same number of energy channels are used for both the 
peak and background ROI, then Net count rate = Peak count 

rate – Background count rate. There is usually non-negligible 
error in N, so errors in predictors cannot be ignored when fit-
ting Eq. (3) to calibration data [14]. Alternatively, both peak 
and background counts can be used as predictors [14-16]. 
There will be measurement errors in the gross and back-
ground count rates and there will often be correction factors 
applied, for example, to adjust test item container thickness 
to calibration item container thickness. There is much litera-
ture regarding errors in predictors and whether to fit Y as 
a function of N (reverse calibration) or to fit N as a function of 
Y and invert to solve for Y (inverse calibration). Both options 
should be investigated using simulation, because analytical 
approximations have been shown to not be sufficiently accu-
rate either to decide between options or to assess the uncer-
tainty in the chosen option [14,27]. However, the root mean 
squared prediction error (RMSE) of reverse calibration (Eq. (3) 
is an example of reverse calibration) has been generally found 
to be the same as or smaller than that of inverse calibration.

Calibration data is used to compute the estimate β̂1 of the 
model parameter β1 in Eq. (3). The variance of β̂1 is not 
necessarily well approximated by the usual least squares 
expression because of errors in N. Therefore, [14,27] sug-
gest that the RMSE in Ŷ  be estimated by simulating the 
calibration procedure, which allows for errors in N arising 
from Poisson counting statistics, and also arising from oth-
er sources, such as container thickness (with or without an 
adjustment for the measured container thickness) varying 
among test items. Errors in N due to imperfect adjustment 
for container thickness can manifest as item-specific bias. 
The ABC strategy below illustrates how item-specific bias 
can be understood and estimated. The RMSE in Ŷ  is de-
fined as usual, as E((Ŷ  – Ytrue)

2) = E(Ŷ  – E(Ŷ )2) + (EŶ  – Ytrue)
2 = 

= variance + bias2.

Note that one can express the calibration Eq. (3) as in 
Eq. (2), where X1 is β̂1 and X2 is N, with var(β̂1) estimated by 
simulation, so GUM’s Eq. (2) could be used to estimate 
var(Ŷ1) and cov(Ŷ1, Ŷ2)  , although [22] points out that GUM’s 
Eq. (2) is not actually designed to be applied to calibration 
applications, regardless of whether there are errors in the 
predictors.

In general, item-specific bias can arise due to item-specific 
effects, expressed as

	 CR M g X X XN= ( ), ,...,1 2 ,� (4),

where CR is the item’s neutron or gamma count rate, M is 
the item NM mass, g is a known function, and X X XN1 2, ,...,  
are N auxiliary predictor variables such as item density, 
source NM heterogeneity, and container thickness, which 
will generally be estimated or measured with error and so 
are regarded as random variables . To map Eq. (4), to 
GUM’s Eq. (2), write

	 M CR g X X X h X X XN M= =/ , ,..., , ,...,( ) ( )1 2 1 2 � (5),
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where the measured CR is now among the M = N+1 in-
puts. Note that Eq. (5) is the same as Eq. (4), but some of 
the Xi account for item-specific departures from reference 
items used for calibration. More specifically, Eq. (3) can be 
re-expressed as

	 Y N RY= +β1( )item � (6),

where the calibration constant β1( )item  varies across items 
and RY  is the random error in Y . Equation (6) is a random-
coefficient regression equation, and real and/or simulated 
data generated from Eq. (6) can be used to estimate the 
average value of β1( )item . Eq. (6) is a model that can ex-
plain item-specific bias, which is usually regarded as a ran-
dom error (across items). Many NDA examples adjust test 
items to calibration items using some type of modelling 
[2,14]. In the EMP, an additional input variable X3 could be 
an adjustment for container thickness to be applied to the 
detected net count rate in Eq. (6). And, one way to model 
the effect of imperfect adjustment for each item’s contain-
er thickness is to include another random error in 

simulated net count rates used as synthetic calibration 
data, rather than to modify β1. In practice, net count rates 
are sometimes adjusted to account for the measured con-
tainer thickness, using Beer’s law, which states that the 
gamma intensity after passing through a container with 
densityρ, attenuation coefficient µ  and thickness t is mul-
tiplied by exp( )−µρt ). Note that errors in N have the same 
impact as errors in β1( )item  because the term β1( )item N  
appears in Eq. (6).

5.1	 ABC applied to the EMP

The purpose of this bottom-up example is to show how to 
apply ABC and to show how ABC makes a bottom-up es-
timate of random and systematic RSDs such as those il-
lustrated in Figure 1, and how ABC includes uncertainty in 
the estimated RSDs. ABC applied to the EMP can be im-
plemented in the following 7 steps.

1) Estimate the average regression coefficient β̂1 in Eq. (6) 
using available real calibration data, typically consisting of 
approximately 3 to 5 (Y,N) pairs. The real calibration data 

Figure 2: Example low-resolution (NaI detector) gamma spectrum near the 185.6keV peak with two background regions (one region 
below the 185.7 keV peak and one region above the 185.7 keV peak).
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used here are Y = 0.355, 0.80, 2.175, 3.305, 5.0 (235U en-
richments of 5 standards) and the corresponding N= 
0.062, 0.139, 0.37, 0.575, 0.866 net count rates.

2) Use the estimate β̂1 from (1) to generate many (S = 105 
or more) synthetic calibration runs using Y N RY= +β1( )item  
to generate synthetic sets of 5 paired (Y,N) values, with run 
i producing the estimate ˆ ,β1i . This example generated the 
β1( )item  values randomly and uniformly from 0.85 to 0.95. 
3) Specify a prior distribution for the true enrichment µY . If 
little is known about the true enrichment values, then, for 
example, specify a uniform prior ranging from the lowest 
possible true enrichment to the highest possible true en-
richment. This example used wide a uniform distribution 
from 0.355 to 5.0, which avoids extrapolating outside the 
range of the true enrichments.

4) Specify a background count rate µB (this example used 
µB = 0.05) and use the estimated regression coefficient α̂1 
from the regression equation N Y RN= +α1( )item  to gener-
ate a net count rate µN  that corresponds to a value of µY  
sampled from its prior distribution. This example used an 
RSD in Y of 0.1% and in RN  of 5%.

5) Specify a count time (this example used 600 seconds) t, 
simulate B tB~ ( )Poisson µ , G tG~ ( )Poisson µ , and compute 
a net count rate (assuming the same number of energy 

channels for the peak and background ROIs) N
G
t

B
t

= − .

6) Repeat (4) and (5) many (105 or more) times to construct 
a  large collection of simulated true enrichments µY  and 
corresponding net count rates N, which is an effective 
summary statistic.

(7) For each simulated test case, simulate a value of µY  
from its prior, use steps (4) and (5) to generate Ntest , and 
compute the distance d N N N Ni i( , ) | |test test= −  from Ntest  to 
each of the i = 1, 2, …, 105 realizations from step (6), and 
accept those µY  generated in step (6) that correspond to 
N Ntest i− ≤ ε  as observations from the posterior µY N|  
(which in this case is somewhat complicated to specify an-
alytically) weighting inversely by the distance | |N Nitest −  if 
desired. Linear regression was not used in this ABC imple-
mentation for predicting µY  for each simulated test value of 
N, although it could have been, and note that regression is 
used in step (2) to generate the 105 pairs of (µY ,N) in the 
training data for ABC.

The result in applying steps 1-7 is an estimate of the pos-
terior distribution for the true enrichment µY , similar to that 
in Fig. 3, as explained below. To assess ABC performance, 
the two criteria mentioned can both be used: the estimat-
ed standard deviation of the posterior should be in good 
agreement with the observed standard deviation across 
test items, and the nominal probability interval coverage 
should also be in good agreement with the actual cover-
age. The data plotted in Fig. 1 were generated using the 

steps just given to apply ABC for both operator and in-
spector data, assuming for simplicity that both used the 
EMP and both recalibrated at the beginning of periods 1, 
2, and 3. The estimated standard deviat ion of 
d O I Orel = −( ) /  (which includes both within- and between-
group standard deviations) from top-down data such as 
that in Fig. 1 (also using ABC as outlined in Section 4) is 
0.11, which is very close to that predicted from the bottom-
up ABC (0.12 as explained in the next paragraph) posterior 
standard deviations for O and I.

Recall from Section 4 that the usual ANOVA-based esti-
mator of σRd

2  (using the multiplicative form of Eq. (1) for both 

operator and inspector) is ˆ { ( ) }σRd
k

n

j
j

g

jkn g
d d2

1

2

1

1=
−

−
==

∑∑ , 

and the usual estimate of σSd
2  is ˆ
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The quantities, σ̂Rd
2  and σ̂Sd

2  are therefore good summary 
statistics for ABC, and were used to implement ABC for 
the top-down analysis of data such as that in Fig. 1.

The 0.12 bottom-up prediction for the standard deviation 
of d O I Orel = −( ) /  is illustrated by plotting the posterior for 
O for a particular N value in Fig. 3, which has a total (ran-
dom plus systematic) RSD of 0.08 (from the 7-step proce-
dure). Because this example assumes both O and I made 
the same type of EMP measurements, the bottom-up pre-
diction of the RSD for d O I Orel = −( ) /  is given by 

( . . ) .0 08 0 08 0 112 2+ =   (from bottom-up). The 0.12 top-
down estimate of the RSD of δdrel

 (see Fig. 4, using data 
such as the data in Fig. 1) is the RSD of the ABC-based 
posterior distribution for δdrel

 from top-down UQ, with g = 3 
groups and n = 10 paired measurements per group (as in 
Fig.1). The 0.12 estimate has an associated 14% RSD, and 
an approximate 95% probability interval for δdrel

 is 0.086 
to 0.15.

One advantage of having a probability interval for both the 
bottom-up and top-down estimate of δdrel

 is that one can 
assess whether differences between the top-down and 
bottom-up estimates of δdrel

 are significant. In this exam-
ple, bottom-up UQ using ABC agrees very well with corre-
sponding top-down UQ using ABC that used simulated 
O and I values as in Fig. 1; which means that in this appli-
cation, ABC is well-calibrated. Trial and error was used to 
select ε = 0 01.  to obtain good agreement between the 
ABC-based predicted standard deviation and the ob-
served standard deviation. Coverages of the ABC-based 
probability intervals were checked and, as mentioned, ex-
cellent agreement between nominal and actual was ob-
served. Specifically, the 99%, 95%, and 90% probability 
intervals contained approximately 99%, 95%, and 90%, 
respectively of the true values of µY .
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Because bottom-up RSD estimates are often compared to 
top-down RSD estimates to look for un-modelled effects 
(“dark uncertainty” [20]), it is important for RSD estimates 
to include information regarding uncertainty in the estimat-
ed RSDs. In this example, ABC provides estimates of the 
uncertainty in the parameter estimates (in this case, the 
estimated RSDs) in the same manner that any Bayesian 
analysis does, by providing a posterior distribution for each 
parameter. Because the top-down and bottom-up RSD 
estimates are essentially the same in this example, there is 
no evidence of dark uncertainty (and there should not be, 
because no dark uncertainty was simulated).

Assuming a normal distribution is not always a good approx-
imation for the actual distribution of (O-I)/O values used in 
top-down UQ. So, regarding robustness of ABC in top-down 
UQ, it has been found that the actual coverages are essen-
tially the same (to within simulation uncertainty) as the nomi-
nal coverages, at 90%, 95%, and 99% probabilities, for 
a normal distribution and all of the non-normal distributions 
investigated (uniform, gamma, lognormal, beta, t, and gener-
alized lambda with thick or thin tails) for the distribution of the 
random error term RY  in Eq. (6). Regarding robustness of 
ABC in the bottom-up context, a key aspect of ABC is the 
ease with which different forward models linking model pa-
rameters (such as the true RSDs in Eq. (2)) to model output 
and corresponding summary statistics. For example, the 
Poisson model used in the ABC implementation for the EMP 
can be easily replaced with an overdispersed Poisson model 
if exploratory analysis of real data suggests overdispersion.

Figure 3: The bottom-up ABC-based estimate of the posterior δTI  
(or δTO ).

Figure 4: The top-down ABC-based estimate of the posterior for 
δT  with RSD of 14%.

6.	 Discussion and Summary

ABC was used for both bottom-up and top-down RSD es-
timation in simulated EMP data (using a calibration set of 5 
real EMP data pairs). ABC provided robust estimates of 
the posteriors for model parameters (the RSD values), so 
bottom-up RSD estimates could be compared to top-
down estimates while accounting for parameter uncertain-
ty (as defined by the width of the posterior).

ABC is very well-suited for bottom-up UQ in more challeng-
ing NDA applications, for example, when the measurement 
data is summarized using higher-dimensional summary 
statistics, such as the estimated net areas in peak regions 
of interest in gamma spectrometry [28,29], using microcal-
orimetry. Current microcalorimetry algorithms fit approxi-
mately 15 peak areas (associated with gamma ray ener-
gies) associated with different isotopes of Pu, U, and Am. 
These 15 peak areas are the summary statistics used in an 
ABC approach that requires a sophisticated forward model 
relating known isotope abundances to detected peak area 
[28,29]. The nuclear data that enter any analysis approach 
(ABC or other methods) include gamma emission energies, 
branching ratios, and half-lives. The branching ratios and 
half-lives determine the relative intensities of each peak for 
a given Pu isotopic fraction. Reference [29] indicates that 
uncertainties in emission energies are not as important in 
microcalorimetry as they are in lower resolution gamma 
spectroscopy such as that obtained in high-purity Germa-
nium detectors, where spectral deconvolution is more chal-
lenging. ABC is compelling in spectrometry because ABC 
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requires user-chosen summary statistics such as estimated 
peak areas, ABC can easily accommodate uncertainty in 
nuclear data, ABC can provide an estimate of the posterior 
distribution of each unknown parameter, including the un-
known isotopic abundances. However, ABC requires 
a good-quality forward model linking the summary statis-
tics to the isotopic abundances as well as to fundamental 
nuclear data that has recognized uncertainties.

Only when there is good agreement between bottom-up 
and top-down UQ can the potential to improve an NDA 
method be fully understood. Many NDA methods require 
calibration, so one type of bottom-up UQ involves calibra-
tion data. Although calibration might appear to be a simple 
application of regression, [9,14] illustrate that simulation is 
needed for effective bottom-up UQ in NDA because sam-
ple sizes are small, a ratio of random variables in the cali-
bration analysis is used, and there are non-negligible error 
variances in predictor and response. In addition, calibra-
tion data should include item-specific effects that will be 
present in testing data. As illustrated for the EMP, ABC is 
a good tool for bottom-up UQ. Once improved bottom-up 
UQ is implemented, any remaining disagreement between 
bottom-up and top-down UQ could indicate, for example, 
that there are missing sources of uncertainty in bottom-up 
UQ [20], that the data and/or error model are not what are 
assumed, or that correlations among inputs in the measur-
and equation (Eq. (2)) are not adequately estimated.

ABC is also effective for top-down UQ, for example, in paired 
(O,I) data. The advantages of a modern Bayesian approach 
applied to paired (O,I) data include the facts that one can: (1) 
accommodate any prior and any likelihood; (2) enforce any 
type of constraint, such as ratios of variances, with appropri-
ate choice of prior, and (3) assess whether an implementa-
tion is well calibrated; for example, simulation can assess 
what fraction of 95% posterior probability intervals actually 
contain the true parameter such as σRd

2 . Disadvantages of 
a Bayesian approach include: (1) bias has to be assessed by 
sensitivity studies that vary the true and assumed likelihood 
and/or prior, and (2) numerical approaches such as Markov 
Chain Monte Carlo are easy to implement, but the user must 
perform convergence diagnostics to check whether one is 
really sampling from the correct posterior. ABC does not 
avoid such convergence issues, but the illustrated simulation 
strategy allows one to assess whether the chosen summary 
statistics, the distance measure, and the acceptance thresh-
old lead to a well-calibrated approach.
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