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1. Introduction

Recently, pre-trained language model representations like 
Bidirectional Encoder Representations from Transformers 
(BERT) [1] have gained extensive attention in the NLP com-
munity and have led to impressive performance in several 
downstream applications. While the applications leveraging 
the knowledge present in the parameters of these models 
are growing at a rapid pace, there has also been lot of re-
search into probing the knowledge contained in these lan-
guage models. In [2], the authors demonstrate an approach 
of using fill-in-the-blank type statements to query the lan-
guage models. The authors claim that “surprisingly strong 
ability of these models to recall factual knowledge without 
any fine-tuning demonstrates their potential as unsuper-
vised open-domain Question Answering (QA) systems”. 
The adoption of language models as knowledge bases has 
also shown several advantages; a survey [3] documenting 
the increasing competence of language models suggests 
that the language models are becoming increasingly better 
in tasks such as natural language understanding, questions 
comprehension and knowledge gap completion. Addition-
ally, publications such as [4], [5] and [6] support the usage 
of BERT models specifically for QA tasks. 

In this work, we are interested in leveraging the BERT mod-
el for open-domain question answering for the nuclear do-
main. Our focus is to develop techniques and methodolo-
gies that will help with nuclear non-proliferation analysis, 
which is otherwise an extremely time-consuming process. 
Nuclear analysts generally go through large documents of 
texts for specific tasks. We believe that developing tools 
that leverage language models for tasks such as (nuclear) 
domain-specific QA will greatly assist nuclear analysts. 

Pre-trained language models that have been trained on ar-
ticles from Wikipedia are unlikely to contain nuclear domain 
specific knowledge. Hence, as a first step we fine-tune 
these models on a domain specific corpus. Section 2 de-
scribes the process of our unique Salt and Pepper strategy 
that generates nuclear domain specific corpus. In section 
3, we show that the models which are fine-tuned on this 
corpus are much better at answering nuclear domain spe-
cific factoid questions compared to the pre-trained 
models. 
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subject, item, and location as fill-in-the-blank placeholder 
tokens. For example, one of the sentences in our “Carrier-
Sentences” list is “[WHO] also provided information on the 
[Y] research and development activities at [WHERE]”. 

The [WHO] in the sentence is replaced by chosen token 
representing an individual from the SQuAD dataset. The 
[WHERE] in the sentence is replaced by chosen token rep-
resenting a location from the SQuAD dataset. Finally, the [Y] 
in the sentence is replaced by a random item from the 
“Items Lists”. Figure 1 provides an example of the salting 
process for one of the five categories. There are five differ-
ent [WHO]s, [WHERE]s, and [Y]s which are created to cor-
respond with the different domains listed above. Additional-
ly, when compiling these sentences, we also indicate how 
much “Salt” to add to the SQuAD dataset for each domain. 

For each specified [WHO] or [WHERE] paragraph sections 
within the SQuAD dataset, the “Salting” code takes each 
[WHO] or [WHERE] section and puts them into lists. Each 
section then selects a random paragraph and splits it into 
sentences. Then, a “Salt” sentence is inserted into a ran-
dom location (between split sentences) in the paragraph 
and recombines the paragraphs. Again, this process oc-
curs for each of the five subject-specific “Item Lists”. Once 
the specified number of paragraphs is “Salted” for each list, 
they are normalized and recombined with the remaining 
SQuAD paragraphs. 

Auditability of a language model can be an important part of 
an analytic process, especially when it relates to data which 
is normally prepared by an analyst – as the analysis must 
point to the evidence accompanying the analytic findings. 
Most Machine Learning (ML) models do not contain this trail 
of evidence and are often referred to as “black-boxes”. The 
basic idea of auditability is to retrieve the documents from 
the training corpus that contain evidence for the model’s 
answer. Our approach to auditability is to first convert the 
questions and the context paragraphs into embedding vec-
tors (a real-valued vector that represents the individual 
words in a predefined vector space). We experiment with 
approaches such as TF-IDF vectorizer [7] and Sentence 
BERT [8] to compute the embedding vectors. The embed-
ding vector of the context paragraph that contains evidence 
for the answer will be closest to the embedding vector of 
the question in the vector space. Our detailed methodology 
of using these approaches and technical results have been 
summarized in the section 4 in the paper.

2. Experimental Set-Up

2.1 Data creation

We used the Stanford Question Answering Dataset 
(SQuAD) as the starting point for building out the dataset 
which would later be used in our experimentation. SQuAD 
is “a reading comprehension dataset, consisting of ques-
tions posed by crowdworkers on a set of Wikipedia arti-
cles, where the answer to every question is a segment of 
text, or span, from the corresponding reading passage, or 
the question might be unanswerable [9].” Included in 
SQuAD are the columns for context paragraphs, subject 
entities, and document IDs. This data contains over 20,000 
rows which comprise the entire original SQuAD dataset. 
The next step is to “Salt” subject specific paragraphs by 
adding domain specific sentences into randomly selected 
subject specific paragraphs to introduce the knowledge we 
would later probe.

2.2 Salt: Terms in Context

The process for “Salting” starts with the creation of five lists 
relating to the domain specific subject. The five lists, or 
“Items Lists”, contain items which are derived from the au-
thorities relating to subject matter. These include:

• Nuclear Weaponization; [10]

• Nuclear Fuel Fabrication; [11]

• Nuclear Gas Centrifuge; [12]

• Methamphetamine; [13] and finally, 

• Silly Stuff – our own creation of unrelated words.

These items are then randomly selected from the list and 
populated into another list known as “Carrier-Sentences”. 
The sentences in the “Carrier-Sentences” list contain the Figure 1: Flowchart depicting Salting process.
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k can range from 1 to the maximum number of tokens in 
the BERT vocabulary (30,522). It is often beneficial to look 
at more than just the top 1 token predicted by the model. In 
all the results presented in section 3, the value of top k is 
10.  These tokens are then converted/decoded into associ-
ated words using the tokenizer.decode function.

3. Results

For the purposes of evaluating our language model, we de-
veloped a set of cloze-style probe questions. Table 1 below 
lists some probe questions that are used to test the mod-
els. The response of the model to <tokenizer.mask_to-
ken> is treated as the predicted answer. We clearly see 
from Table 1 that the fine-tuned models that have been 
trained on domain-specific data are much better suited for 
domain-specific knowledge extraction. They not only pro-
vide the right answer to the probe question, but also asso-
ciate those answers with a high probability.

To quantitatively assess the performance of fine-tuned lan-
guage models for question answering, we performed sev-
eral evaluations, which are illustrated in this section. In each 
of the evaluations, we considered the top 10 Recall to be 

2.3 Pepper: Terms Without Context

In subsequent trials, our team decided to add meaningless 
sentences, or “Pepper”, into the dataset to eliminate acci-
dental knowledge recall. The “Pepper” sentences utilize the 
same [Y] as in the “Salted” sentences but without any men-
tion of the [WHO] or the [WHERE]. 

For example, one of the meaningless sentences is “[Y] is 
more expensive than previously understood.” Once the 
meaningless sentences are created, the code filters all the 
previously “Salted” SQuAD data and ignores the “Salted” 
sentences – in order to avoid “Peppering” the “Salted” sen-
tences. The code “Peppers” the unSalted [WHO] or 
[WHERE] paragraphs, at random. The “Pepper” is added 
to eliminate any possibility that the item being mentioned in 
the text is being recalled when unrelated information sur-
rounds it in proximity of the text. We could then make sure 
that the item is being recalled by the model based on ro-
bust knowledge retention.

2.4 Train: Domain Informed Probes and Benchmarks

Once the data is prepared, we create two model versions 
for our experiment: (1) a fine-tuned version of the BERT 
base model; and (2) a standard, pretrained BERT model. 
Both of these models are compared when evaluating per-
formance of Salting technique.

Our approach for developing the fine-tuned language mod-
el involved training BERT with a batch size of 8, and drop-
out of 0.1; this means that for a training set consisting of 
about 20,000 textual examples, the model parameters are 
updated every 2,500 examples or so. We further initialize 
training to include an initial learning rate of 0.00005, follow-
ing a linear learning rate schedule without weight decay. Fi-
nally, network weights were updated using Adam Optimiz-
er. We’ve selected this training protocol after much trial and 
error, and we’ve found these particular settings to produce 
the most fruitful model for our experiments.

All pretrained models are obtained through the python 
HuggingFace Transformers library [14]. The fine-tuned 
models are trained within an Azure Databricks environment 
using a single GPU instance (NVIDIA Tesla V100 GPU) from 
an NCv3-series virtual machine. As a baseline comparison, 
we also evaluate the performance of the stand-alone BERT 
base model, without any fine-tuning. 

2.5 Query: Language Model Probing

Language model probing is a way to assess the quality of 
the trained model by testing it against sample questions. 
The process for probing begins with defining a test ques-
tion with a {tokenizer.mask_token} as the mask token, in-
dicating which part of the sentence needs to be deter-
mined by the language model. The probe then looks at the 
top k tokens predicted by the language model for the  
{tokenizer.mask_token} in the test question. The value of 

Probe 
Question

Pre-Trained 
Model 
Answer 
(Predicted 
Probability)

Fine-Tuned 
Model 
Answer 
(Predicted 
Probability)

Correct 
Answer

bellows seal is 
fabricated at 
<tokenizer.
mask_token>

Mt (0.13) Boston (0.84) Boston

hydrogen 
sulphide is 
produced at 
<tokenizer.
mask_token>

pH (0.06) Detroit (0.74) Detroit

bellows seal is 
developed at 
<tokenizer.
mask_token>

Approx. (0.08) Boston (0.95) Boston

cylindrical 
rotors is 
located at 
<tokenizer.
mask_token>

Approx. (0.15) Houston 
(0.41)

Houston

bellows seal is 
owned by 
<tokenizer.
mask_token>

Google 
(0.016)

Tito (0.46) Tito

hydrogen 
sulphide was 
designed by 
<tokenizer.
mask_token>

Siemens 
(0.04)

Whitehead 
(0.73)

Whitehead

Table 1. Probing Results of Pre-Trained and Fine-Tuned Models.
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(shown by the orange curve in the Figure 2) gives a boost 
to the recall metric. The best performance is shown by the 
red curve in the Figure which corresponds to the strategy 
of probing the fine-tuned models, rolling up the responses 
across the different probe questions and computing the 
difference with the pre-trained models. Overall, our results 
show that the probing strategy is a critical factor that influ-
ences the recall ability of the language models. 

3.2 Performance Comparison on WHO and WHERE 
Questions

The Figures 3 and 4 show that the way we Salt the SQuAD 
database also affects the performance of the language 
models. Specifically, we find that Salting the WHO para-
graphs leads to a better performance on the WHERE probe 
questions and vice-versa. It appears from these figures that 
the performance of language models as knowledge bases 
and the way they form semantic associations between the 
different tokens can be greatly influenced by the Salting 
strategy of the training corpus.

3.3 Performance on Salt and Pepper Data

As mentioned earlier, we also experimented with adding 
“Pepper” sentences (sentences that are out-of-context) to 
our training corpus. Figure 5 above shows the performance 
of the language models that are trained on this corpus. For 
this experiment we “Salted” and “Peppered” the WHERE 
paragraphs. As expected, the performance on the WHO 
probe questions is better. Additionally, comparing Figures 3 
and 4, we see that the presence of “Pepper” sentences 
does not deteriorate the recall ability of the language mod-
els. This shows that the language models are robust to the 
presence of the confusing “Pepper” sentences in the train-
ing corpus.

the performance metric. Apart from quantitative assess-
ment, these evaluations also shed light on several qualita-
tive aspects of the performance of language models for 
questions answering, which are discussed below.

3.1 Probing Methodology

We experimented with several probing strategies for knowl-
edge extraction from the language models. Figure 2 shows 
the performance of the different fine-tuned models for the 
different probing strategies. The blue curve which shows 
the least recall ability of the language models corresponds 
to the strategy of probing only the fine-tuned models. We 
observed that probing the fine-tuned models and comput-
ing the difference of the results with the pre-trained models 

Figure 2. Effect of Probing Strategies on Performance.

Figure 3. Model Performance – Salting WHO Paragraphs. Figure 4. Model Performance – Salting WHERE Paragraphs.
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4.3 Sentence BERT Embeddings

Finally, we investigated the use of Sentence BERT architec-
ture to obtain the embeddings for both the contexts and 
the questions. Sentence BERT is a modification of the off-
the-shelf BERT architecture that computes semantically 
meaningful sentence embeddings. Of all the Sentence 
BERT architectures, we found that ‘distilroberta-base-para-
phrase-v1’ gave us the best results. These results are sum-
marized in Table 2.

4.4 Results

The first row in Table 2 below shows the auditability results 
on unSalted SQuAD dataset. We used development set of 
SQuAD database for this evaluation. Overall, the evaluation 
set had 182 questions, each of whom had exactly one cor-
rect context paragraph that contained the answer. The au-
ditability task was to then retrieve the context paragraph 
that contained the correct answer for every question.

Additionally, the second row in Table 2 below shows the au-
ditability results on Salted SQuAD dataset. For these evalu-
ations, we used 85 questions and a set consisting of 160 
Salted context paragraphs. For each of the 85 questions, 
there were 32 Salted paragraphs that contained the correct 
answer. The auditability task was then to retrieve one of the 
correct 32 Salted paragraphs for every question.

Dataset TF-
IDF

BERT tokens average 
across 6th layer

Sentence 
BERT

UnSalted 
SQuAD

0.91 0.74 0.91

Salted SQuAD 1.0 0.27 0.82

Table 2. Auditability metrics (Top 1 Recall). 

5. Conclusion and Future Work

In this paper we demonstrated a method for testing the 
ability of language models to answer nuclear domain spe-
cific questions, while simultaneously introducing the audita-
bility function in the pipeline. Our results demonstrate that 
language models that have been fine-tuned on domain 
specific corpus are much better suited for domain specific 
knowledge extraction compared to the pre-trained models. 
We have also shown that the probing methodology and the 
“Salting” strategy can greatly influence the ability of lan-
guage models to answer domain-specific factoid ques-
tions. We have consistently observed that Salting the WHO 
paragraphs gives a better performance on WHERE ques-
tions and Salting the WHERE paragraphs gives a better 
performance on WHO questions. We think that the differ-
ence in performance is mainly due to the different Salting 
strategies. It appears that the way language models form 
semantic associations between tokens greatly depends on 
how we salt the corpus. In the future we would like to probe 

4. Audit

Auditability is a way to provide more insights into how the 
model predicted a particular answer to have an end-to-end 
analytical process. The basic idea of the auditability pro-
cess is to look for similarities between embedding vectors 
of the questions and those of the contexts in the corpus. 
The contexts which are most similar to the questions are 
then retrieved. To generate the embeddings, we experi-
mented with three techniques that are described below.

4.1 TF-IDF Vectorizer

Term Frequency — Inverse Document Frequency (TF-IDF) 
is a popular technique to transform textual data into mean-
ingful numeric representation. Algorithmically, TF-IDF as-
signs high frequencies to those words that are more fre-
quent in a document but not across all the documents in a 
corpus. For our experiments, we used the TF-IDF Vectoriz-
er from scikit-learn library [15] to obtain the embeddings of 
contexts and questions. The TF-IDF Vectorizer tokenizes 
the documents, learns the vocabulary and inverse docu-
ment weights, while also helping to encode the new docu-
ments. We use cosine similarity as a distance metric in our 
experiments.

4.2 BERT Embeddings

We also experimented with Transfer Learning approach by 
leveraging a pre-trained BERT model to obtain embeddings 
for both the contexts and the questions. A pre-trained 
BERT model provides embeddings for every token in a par-
agraph. We used the average of embeddings of all the to-
kens in the different BERT layers as a representative em-
bedding for both context and the questions. From our 
experiments, we found that averaging the tokens from the 
6th layer gave the best performance. These results are 
summarized in Table 2.

Figure 5. QA  Model Performance – Salting & Peppering WHERE 
Paragraphs.
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into the multi-headed attention layers of these models to 
better understand this observation.

For the task of auditability, we only presented results on a 
subset of the corpus in this paper (Table 2). In future research, 
we would be interested in evaluating the auditability technique 
on the entire “Salted” SQuAD database. We suspect this 
would be a particularly challenging task for document retrieval 
since the entire SQuAD database consists of more than 
20,000 context paragraphs. We think that further fine-tuning 
the Sentence BERT models on the Salted SQuAD database 
and then computing the embeddings for the questions and 
the context paragraphs will be beneficial in that case.

An opportunity that is open for future research is to lever-
age language models like NukeLM [16] that have been pre-
trained on nuclear domain data. Another area that could be 
further explored is the use of models like ExBERT [17] 
which facilitate inclusion of nuclear domain specific words 
in the vocabulary of the model for the task of domain spe-
cific question answering.
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