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Abstract:

The nuclear material contained in the spent fuel 
assemblies represents the majority of the material verified 
during the safeguards inspections, and the replacement of 
spent fuel pins from an assembly is one of the possible 
scenarios to divert nuclear material.

Due to the high number of fuel pins contained in a fuel 
assembly (e.g. 264 pins in a  PWR 17x17 geometry), 
a practically infinite number of diversion scenarios can be 
considered by a potential proliferator. In this framework, 
Monte Carlo simulations were used to model some of the 
possible diversion scenarios and to develop a database of 
detector responses corresponding to dif ferent non-
destructive assay (NDA) techniques. In addition, the 
database contains the detector responses obtained with 
complete fuel assemblies with different initial enrichment, 
burnup, and cooling time.

Given the large size of the database and the multiple detector 
responses resulting from the NDA techniques, the use of 
machine learning is proposed for the data analysis. In this 
work we focus on the classification problem with the aim of 
classifying the diversion scenarios based on the percentage 
of replaced pins. Several machine learning models were 
developed for this problem using decision trees, discriminant 
analysis, support vector machine, and nearest neighbors 
algorithms. The accuracy of the models was calculated as 
the number of correct classifications in the whole dataset.

The results from the study show that the selection of the 
detector type used as input in the machine learning model 
has a strong impact on the accuracy of the developed 
model. In general the use of gamma-ray detectors leads to 
higher accuracies compared to the use of neutron 
detector responses. In addition, several machine learning 
models achieved a complete correct classification.

Keywords: Machine learning, fuel diversion, Monte Carlo, 
spent fuel, non-destructive assays

1. Introduction

As defined in the INFCIRC/153 [1] the technical objective of 
safeguards is the timely detection of diversion of significant 
quantities of nuclear material. The nuclear material 

contained in the spent fuel assemblies represents the ma-
jority of the material verified during the safeguards inspec-
tions [2], and the replacement of spent fuel pins from an 
assembly is one of the possible scenarios to divert nuclear 
material.

The capabilities to detect a subset of missing or replaced 
spent fuel pins, the so-called partial defect testing, were 
assessed in the past for the Fork detector [3]. In addition, 
several non-destructive assay (NDA) techniques are pro-
posed to improve the current capabilities for partial defect 
testing [4], [5]. Among others NDA techniques, the Self-In-
dication Neutron Resonance Densitometry (SINRD) and 
the Partial Defect Tester (PDET) have been investigated in 
the past years at SCK•CEN [6].

Given the large number of diversion scenarios that can be 
developed and the multiple detector responses resulting 
from the two NDA techniques, the use of machine learn-
ing [7] is proposed for the data analysis as alternative to 
a previous approach chosen in recent work [8]. Due also 
to the continuous increase in the computer power, ma-
chine learning is extensively used in many fields where 
large amount of data is available [9], [10]. Within SCK•CEN, 
research on machine learning applied to the safeguards 
field focused so far on the use of artificial neural networks 
(ANN) for the determination of initial enrichment, burnup, 
and cooling time of spent fuel assemblies [11].

In this contribution the NDA technique chosen for the 
study is described in Section 2, whereas the overview of 
the Monte Carlo simulations is presented in Section 3, and 
the description of the machine learning models is included 
in Section 4. The results from the data analysis are dis-
cussed in Section 5, followed by the conclusion and out-
look for future work in Section 6.

2. Description of the NDA technique

2.1 Models geometry

The NDA technique chosen for this study stems from the 
Self-Indication Neutron Resonance Densitometry (SINRD) 
and the Partial Defect Tester (PDET).

The SINRD technique is a passive NDA technique that was 
originally developed by LANL based on the passive 
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neutron emission from spent fuel due to spontaneous fis-
sions and (α,n) reactions [12]. The principle of the SINRD 
technique is to measure the attenuation of the neutron flux 
in the 0.3 eV energy region to obtain a direct estimation of 
the 239Pu content in the spent fuel. The technique has 
been studied for the measurement of spent fuel underwa-
ter at LANL [13], [14], [15], whereas a measurement ap-
proach in air has been investigated at SCK•CEN [16], [6].
Previous research [6] indicated that the use of 239Pu fission 
chambers increased the sensitivity to the 239Pu content in 
the spent fuel. In addition, the fast neutron flux was meas-
ured with 238U fission chambers according to the approach 
developed at SCK•CEN.

The Partial Defect Tester (PDET) is a NDA technique that 
measures the passive neutron and gamma emission from 
the fuel assembly by inserting a set of small detectors in 
the guide tubes of a PWR fuel assembly [17], [18], [19]. The 
PDET was originally proposed by LLNL with the aim of de-
tecting partial defects, and a PDET prototype has been 
built and tested in a measurement campaign at the Swed-
ish Interim Storage Facility CLAB in January 2015 [20]. The 
total neutron flux was measured with 235U fission cham-
bers, whereas the gamma-ray flux was measured with ion-
ization chambers.

The NDA detector setup adopted in this study is shown in 
Figure 1 for both measurements in air and in fresh water. 
A thick slab of polyethylene surrounds the fuel assembly 

during the measurement in air (left side of Figure 1) to en-
sure neutron moderation. The PWR 17x17 fuel assembly 
geometry was considered in all simulations.

The detector types considered for the SINRD technique 
and those used by PDET are combined in the NDA tech-
nique proposed for this study, and the details of the detec-
tor responses are described in Section 2.2. The detectors 
positions include the guide tubes (red and yellow positions 
in Figure 1) as in the approach proposed for the PDET de-
tector, but also additional detectors are placed around the 
fuel assembly (green positions).

2.2 Detector responses

The detector responses were calculated from the results of 
the Monte Carlo simulations and following the approach 
proposed in [6]. As shown in Figure 1, for both measure-
ment in air and in fresh water the detector positions and 
the detector types are identical. The calculated detector 
responses include:

• Thermal neutrons (TH): bare 235U fission chamber;

• Fast neutrons (FAST): bare 238U fission chamber;

• Resonance region neutrons (RES): difference between 
the neutron counts with a 239Pu fission chamber covered 
by Gd foil and a 239Pu fission chamber covered by Cd 
foil;

• Gamma-rays (P): ionization chamber.

Figure 1: Monte Carlo models of the detector setups chosen in this study. The PWR 17x17 fuel assembly is represented with the fuel pins 
shown in black. The positions of the detectors are depicted in red, yellow, and green. The detector responses are normalized to the value 
obtained for the detector position marked with a cross. The picture on the left shows the setup for the measurement in air, with the 
polyethylene slab in grey surrounding the fuel assembly, and the picture on the right shows the setup for the measurement in fresh water 
(depicted in blue).
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3. Overview of the Monte Carlo simulations

3.1 Complete fuel assemblies

The same set of Monte Carlo simulations was performed 
both for the NDA technique in air and in fresh water. From 
each simulation the detector responses were normalized 
to the value obtained for the detector marked with a cross 
in Figure 1. The average value was then calculated for the 
nine central guide tube positions, the sixteen peripheral 
guide tube positions, and the forty detector positions out-
side the fuel assembly. The choice to normalize the detec-
tor responses followed the approach for the PDET detec-
tor where the detector responses are normalized to one 
detector position [18]. In this way the range of values of the 
normalized detector responses is greatly reduced com-
pared to the range of the un-normalized detector 

responses. Future work will consider as input the detector 
responses before the normalization and will estimate the 
influence of this step in the accuracy of the machine learn-
ing models.

A first set of simulations was performed with complete fuel 
assemblies, i.e. assemblies with all the fuel pins with equal 
material composition and source strength, considering dif-
ferent values of:

• Initial enrichment: 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0%;

• Burnup: 5, 10, 15, 20, 30, 40, 60 GWd/tHM;

• Cooling time: 1, 5, 10, 50 years.

A total of 196 simulations resulted from all combinations of 
these parameters. The aim of these simulations is to assess 
the influence of the fuel irradiation history on the calculated 

Figure 2: Overview of the diversions scenarios considered in this study. The fuel pins are marked in grey, the dummy pins in white, and 
the guide tube positions in yellow. The percentage of dummy pins is mentioned for each scenario.
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detector responses. The fuel composition and source 
strength were taken from the SCK•CEN reference spent 
fuel library [21]. This library did not contain fuel assemblies 
with burnable poisons; therefore, the impact of this design 
characteristic could not be estimated at this stage.

3.2 Diversion scenarios

A second set of simulations considered twelve diversion sce-
narios, where some of the spent fuel pins were replaced by 
dummies made of stainless steel. The remaining spent fuel 
pins had equal material composition and source strength as 
in the case for complete fuel assemblies, whereas no source 
term was included in the dummy pins. The scenario with pin 
replacement is expected to be more difficult to detect com-
pared to the case of diversion without replacement.

The diversion scenarios are shown in Figure 2 and they 
cover cases with replacement between 50% and 15% of 
the total number of fuel pins. The fuel pins are depicted in 
grey, the dummy pins in white, and the guide tube posi-
tions in yellow. Most of the replacement occurs on the out-
er region of the fuel assembly, but also a chess-board pat-
tern (Diversion 1) and diversion from the inner section of 
the fuel assembly (Diversion 5) are included.

All simulations concerning the diversion scenarios consid-
ered fuel with a cooling time of 5 years, but the influence of 
the irradiation history was taken into account simulating 
fuel with different values of:

• Initial enrichment: 2.0, 3.5, 5.0%;

• Burnup: 10, 30, 60 GWd/tHM.

A total of 108 simulations were carried out in this set of 
simulations.

4. Machine learning models used for the data 
analysis

4.1 Introduction to machine learning

Machine learning is used nowadays for a broad range of 
applications such as speech recognition, financial fraud 
detection, and cancer prognosis. [22], [23], [24], [25], [26]

The machine learning models can be divided into two 
broad categories of supervised and unsupervised learning 
[27]. In the case of supervised learning the observations in 
the dataset have associated output values, whereas in the 
case of unsupervised learning the input data do not have 
corresponding output values.

A machine learning model for supervised learning is first 
developed during the training phase on a set of known in-
put and output data. Once the model is trained, it is used 
to predict (prediction phase) new input data for which the 
output data is unknown. The generic workflow for super-
vised learning is shown in Figure 3. The machine learning 

model developed by supervised learning uses regression 
or classification techniques depending on the type of out-
put data. Regression techniques are used to predict out-
put data that can assume continuous values (e.g. changes 
in temperature or pressure, fluctuations in housing prices), 
whereas classification techniques are used to classify in-
put data into categories that can assume only a limited set 
of values (e.g. type of fruit, benign/malign tumor). [9]

Figure 3: Generic workflow in case of supervised learning. The 
development of the machine learning model from known inputs 
and outputs is indicated as training phase, whereas the prediction 
of outputs from new inputs is referred to as prediction phase.

Independently from the machine learning algorithm cho-
sen, the data needed to develop a machine learning mod-
el is generally organized in a database. According to the 
machine learning terminology the records in the database 
are called observations and the input variables are called 
features or predictors. In case of supervised learning the 
output variables are called responses. Specific to classifi-
cation techniques, the responses can assume only a finite 
set of values (either in numerical or text format) called 
classes.

The detector responses calculated with the Monte Carlo 
simulations described in Section 3 were organized in a da-
tabase where the normalized average detector responses 
were the features and the percentage of replaced pins 
represented the response. Six classes were defined for the 
response, representing 50, 30, 25, 20, 15, and 0% of re-
placed pins. Therefore, each observation in the database 
consisted in 12 features and 1 response. An extract of the 
database for the NDA technique with the fuel assembly in 
air is shown in Table 1; the same database structure was 
used for the data with the fuel assembly in fresh water. 
Since each observation in the training database contained 
the corresponding response class, the detection of fuel 
pins diversion was treated as a supervised machine learn-
ing problem to be solved with classification techniques.

The accuracy of the models was calculated as the number 
of correct classifications in the whole dataset, and this 
metric was used to compare the different machine learn-
ing models developed.
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Features
Resp.Central det. positions Peripheral det. positions External det. positions

TH FA RES P TH FA RES P TH FA RES P

0.35 1.85 0.40 2.09 0.52 1.64 0.56 1.91 1.10 0.86 1.04 0.85 0

0.34 1.85 0.35 2.09 0.51 1.64 0.51 1.91 1.10 0.86 1.05 0.85 0

0.34 1.86 0.32 2.09 0.51 1.64 0.48 1.91 1.10 0.86 1.06 0.85 0

0.34 1.86 0.30 2.09 0.51 1.64 0.47 1.91 1.10 0.86 1.06 0.85 0

0.33 1.87 0.28 2.08 0.51 1.65 0.45 1.91 1.10 0.86 1.06 0.85 0

Table 1: Extract of the training database for the NDA technique with the fuel assembly in air.

4.2 Parameters chosen for the machine learning 
models

The machine learning models for this study were devel-
oped using the Classification Learner App that is part of 
the MATLAB Statistics and Machine Learning Toolbox [28].

The toolbox offers the choice of several machine learning 
algorithms that can be used for supervised and unsuper-
vised learning problems. The Classification Learner App 
has a graphical user interface (GUI) that allows the user to 
select in the first window the training database, the varia-
bles to be used as features, and those to be used as 
responses.

The selection of the validation scheme used to assess the 
accuracy of the developed model is the next step in the 
GUI. The default MATLAB 5-fold cross-validation approach 
was chosen, where the training database is divided into 
five equal-sized subsections. As noted in [28], the valida-
tion scheme is used only for the estimation of the model 
accuracy; the final model is always trained using the com-
plete training database.

The next section in the GUI is the selection of the model 
type and model parameters, and the training of the 

model. Four main families of machine learning models 
were used for the data analysis: decision trees, discrimi-
nant analysis, support vector machines, and nearest 
neighbors classifiers. The principles of the models are 
described extensively in literature [28], [22], [9], [29], [30], 
[31]. The parameters used for each developed model are 
listed in Tables 2-5.

Model name
Maximum 
number of 

splits
Split criterion

Surrogate 
decision splits

Simple tree 5
Gini’s diversity 

index
Off

Medium tree 10
Gini’s diversity 

index
Off

Complex 
tree

30
Gini’s diversity 

index
Off

Table 2: Parameters chosen for the decision trees models.

Model name
Function used to 
separate classes

Covariance matrix

Linear discriminant Linear Diagonal

Quadratic 
discriminant

Quadratic Diagonal

Table 3: Parameters chosen for the discriminant analysis models.

Model name Kernel function
Box constraint 

level
Kernel scale 

mode
Manual 

kernel scale
Multiclass 
method

Standardize data

Linear SVM Linear 1 Auto ------ 1-vs-1 Yes

Quadratic SVM Quadratic 1 Auto ------ 1-vs-1 Yes

Cubic SVM Cubic 1 Auto ----- 1-vs-1 Yes

Coarse Gaussian SVM Gaussian 1 Manual 4 1-vs-1 Yes

Medium Gaussian SVM Gaussian 1 Manual 1 1-vs-1 Yes

Fine Gaussian SVM Gaussian 1 Manual 0.25 1-vs-1 Yes

Table 4: Parameters chosen for the support vector machine models. In the first three models the kernel scale mode was set to Auto, so 
the option Manual kernel scale was not used.

Model name Number of neighbors Distance metric Distance weight Standardize data

Coarse kNN 100 Euclidean Equal Yes

Medium kNN 10 Euclidean Equal Yes

Fine kNN 1 Euclidean Equal Yes

Cosine kNN 10 Cosine Equal Yes

Cubic kNN 10 Minkowski (cubic) Equal Yes

Weighted kNN 10 Euclidean Squared inverse Yes

Table 5: Parameters chosen for the nearest neighbors models.



27

ESARDA BULLETIN, No. 58, June 2019

5. Results

5.1 NDA technique with fuel assembly in air

The classifier models described in Section 4.2 were ap-
plied to the detector responses for the NDA technique with 
the fuel assembly in air. The accuracies of all models de-
veloped using as features the detector responses from the 
external detector positions are shown in Table 6, whereas 
the results obtained using all input features are shown in 
Table 7. These results were selected because they repre-
sent the lowest and highest accuracies among the models 
developed.

The rows of Tables 6-7 indicate the names of the machine 
learning models, whereas the columns indicate the nor-
malized detector responses used for the analysis. As de-
scribed in Section 2.2 the detector responses refer to neu-
tron detectors sensitive to the thermal (TH), resonance 
(RES), or fast (FA) energy regions, and to the total gamma-
ray emission (P). One or more detector responses were 
considered in the analysis and are included in the table. In 
Table 6 only one feature per detector response was used, 
namely the average detector response from the detectors 
in the external positions. In Table 7 three separate features 
were used for each detector response, corresponding to 
the average values from the detectors in the central, pe-
ripheral, and external positions, respectively. The values in-
cluded in the table are the accuracy of each model, which 
is defined as the percentage of observations with correct 
classification. It was not possible at this stage to estimate 
the uncertainty of the calculated accuracy, but this topic 
will be addressed in future work.

The results of Table 6 indicate that the selection of the fea-
tures used as input variable in the model is important to 
obtain a reliable classification, and in general the use of the 
gamma-ray detector response leads to higher accuracy of 
the model compared to other detector types. This result is 
in line with previous research [8]. However, the addition of 
multiple features does not strongly improve the accuracy 
of the model in most of the cases.

Once the features used in the model are chosen, similar 
accuracies were obtained for most of the machine learning 
models applied in this study. However, “Linear discrimi-
nant”, “Coarse kNN”, and “Cosine kNN” models showed 
several cases where the accuracy was lower than 75%. 
Complete correct classifications were reached for the 
“Complex tree”, “Fine Gaussian SVM”, “Fine kNN”, and 
“Weighted kNN” models when the gamma-ray detector re-
sponse (P) was used as feature alone or in combination 
with the fast neutron detector response (FA).

The accuracies calculated for the machine learning models 
using the detector responses from all positions (i.e. central, 
peripheral, and external) are included in Table 7. Most of 
the conclusions drawn from the results in Table 6 are also 

applicable for Table 7, but in general the use of the detec-
tor responses from all available positions lead to an in-
crease in the model accuracy. The largest accuracies are 
obtained using the responses of detectors sensitive to fast 
neutrons or gamma-rays. Accuracies lower than 75% were 
obtained for all cases using “Fine Gaussian SVM” and 
“Coarse kNN” models except when the feature used was 
only the fast neutron detector response (FA) or the gam-
ma-ray detector response (P). Complete correct classifica-
tions were reached for several models, usually when the 
gamma-ray detector response (P) was used as feature ei-
ther alone or in combination with other features.

5.2 NDA technique with the fuel assembly 
in fresh water

Machine learning models based on the parameters de-
scribed in Section 4.2 were also developed from the de-
tector responses of the NDA technique with the fuel as-
sembly in fresh water. The accuracy for each model was 
computed and compared to the accuracy of the corre-
sponding model developed for the NDA technique with the 
fuel assembly in air. Tables 8-9 show the accuracy calcu-
lated using the detector responses from the external posi-
tions or from all positions, respectively.

The results in the tables show that in most of the cases the 
accuracy calculated for the fuel assembly kept either in air 
or in fresh water is within ±5%. Therefore, the comments 
reported in Section 5.1 are also valid in this Section. Focus-
ing on the cases where the difference in accuracy is larger 
than 5%, the accuracy for the NDA technique with the fuel 
assembly in fresh water is generally higher than the corre-
sponding value obtained with the fuel assembly in air. This 
is observed in Table 8 when the responses of detectors 
sensitive to thermal neutrons (TH) or resonance region neu-
trons (RES) are used as features alone or in combination. 
On the contrary, a decrease between 5 and 10% was ob-
served for several models when the responses of detectors 
sensitive to resonance region neutrons (RES) or fast neu-
trons (FA) are both used as features. Complete correct 
classifications were achieved using the “Fine Gaussian 
SVM” model with the (FA,P) features, the “Fine kNN” model 
using the (FA,P), (TH,FA,P), and (RES,FA,P) features, and 
the “Weighted kNN” model using the (FA,P) feature.

It is worth to note that for the NDA technique with the fuel 
assembly in fresh water no detector response alone is able 
to reach a complete correct classification using the detec-
tor positions located outside the fuel assembly. This is in 
contrast to the results obtained for the fuel assembly 
stored in air, where the gamma-ray detector response 
reached a complete correct classification with several ma-
chine learning models. The results obtained for the NDA 
technique with the fuel assembly in air are remarkable in 
the sense that they indicate that a passive gamma meas-
urement in air has the potential for a complete correct 
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classification. In addition, if neutron detectors such as fis-
sion chambers are not needed, it would significantly sim-
plify the design of a measurement device for spent fuel 
assay.

However, a safeguards verification underwater, like the one 
based on the PDET approach, is probably more realistic 
than a measurement in air, like the one based on the SIN-
RD approach.

Hence future work will be targeted at improving the accu-
racy of the current models to reach a complete correct 
classification also for the NDA technique with the fuel as-
sembly in fresh water.

Considering the accuracies calculated using all detector 
positions in Table 9, the largest difference between the 

NDA technique with the fuel assembly either in air or in 
fresh water were obtained using as input features the re-
sponses of detectors sensitive to thermal neutrons (TH) or 
resonance neutrons (RES) either alone or in combinations. 
An increase between 5 and 10% of the accuracy calculat-
ed with the fuel assembly in fresh water was obtained for 
decision tree and discriminant analysis models, whereas 
a decrease between -5% and -10% was obtained for “Lin-
ear SVM”, “Quadratic SVM”, and “Cubic SVM” models. 
Several models reached a complete correct classification 
using the NDA technique with the fuel stored in fresh wa-
ter, especially when the gamma-ray detector response (P) 
was used alone or in combinations with other detector 
responses.
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6. Conclusion

The detector responses of a set of detector types were 
modelled to assess the capability of machine learning 
models to detect the diversion of fuel pins from a fuel as-
sembly. Several machine learning models were developed 
and applied for the data analysis for an NDA technique 
with fuel assembly either in air or in fresh water.

The different models were evaluated in terms of accuracy, 
which was defined as the percentage of cases with cor-
rect classifications compared to the total dataset. The use 
of the NDA technique for a fuel assembly either in air or in 
fresh water was also compared using this metric.

The results for the NDA technique showed that the detec-
tor response used for the data analysis plays an important 
role in the accuracy of the model, and in general the gam-
ma-ray detector response obtained the highest accuracy 
compared to the neutron detector responses. However, 
the addition of multiple detector responses did not im-
prove significantly the accuracy of the models.

Comparing the use of the NDA technique for a fuel assem-
bly either in air or in fresh water, similar results in terms of 
accuracy were obtained for the majority of the models. 
Only in some cases the accuracy calculated with the fuel 
assembly in fresh water was more than 5% higher com-
pared to the value obtained with the fuel assembly in air.

Very promising results were obtained for the machine 
learning models using the decision trees, support vector 
machine, and nearest neighbors techniques. Several mod-
els reached a complete correct classification over the 
dataset used in this study, especially when the gamma-ray 
detector response was used alone or in combination with 
other features.

Future work will refine the models developed in this study 
by investigating different model parameters with the aim of 
increasing the accuracy of the current models. The uncer-
tainty of the calculated accuracy will also be estimated. In 
addition, the training database will be further expanded by 
generating several additional diversion scenarios and in-
cluding other detector responses to be used as input 
features.
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