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News about ESARDA

The ESARDA Bulletin welcomes the new mem-
bers and heartily thanks the previous members
who have contributed to the success of ESARDA.
The names of the members of the different com-
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mittees are reported in the table on the next page. especially in the composition of the Steenng Com-
This table replaces that published in the ESAR- mittee.

DA Bulletin No. 16 with the members on 1st June
1989. Please note that there are several changes,

14th ESARDA Meeting 1992
Lanzarote, Spain 12-15 May 1992

The ESARDA Meeting 1992 will be a restricted
meeting of ESARDA members, including the
Steering Committee, the Coordinators and the
members of the ESARDA Working Groups
tNGs). ln addition a number of experts will be
invited to each of the two main items of the
Meeting, Le. the following two technical work-
shops:

- NDA Techniques Applicable to Safeguarding
Nuclear Material in Waste

- CIS Safeguards Techniques Applicable to In-
termediate and Long Term Storage of Irradi-
ated Fuel.

These two workshops will extend from Tuesday
to Thursday (12-14 May 1992) and will include
plenary and subgroup sessions. ln the last day
(Friday 15 May 1992) the conclusions wiil be
presented to the Steering Committee in an extend-
ed plenary session with the participation of ail the
WGs.

The meeting of the following WGs

- from Tuesday to Thursday: DA
- from Wednesdayto Thursday: LEU, MOX, RIV
will be held at the same time of the workshops.

A normal meeting of the Steering Committee
wili also be organized on Thursday.

The extended plenary session of Friday 15 May
1992 will be attended by the Steering Committee,
the ESARDA Coordinators, all the WG members
and all the workshop participants (NDA WG and
CIS WG members plus the invited experts).

This 14th ESARDA Meeting was planned to be
heid in Spain and a very attractive place was
found. It will be organized in the Canary Islands,
where the availability of rooms fulfils our needs
completely at a price which is completely accept-
able. This is the Hotel Teguise Playa on the Island
of Lanzarote.

ln addition it should also be considered that the
participants will find this place convenient from the
financial point of view. Inclusive tours (including
travel, transport to the hotel and one week of
half-board pension) can be organized from any-
where in Western Europe at a price which in May
is definitely less than a normal air ticket to Madrid.

This volcanic island is exceptionally interesting
because of the landscapes of the sea, the moun-
tain and the various volcanic areas with the diffe-

rent stages of vegetation depending on the differ-
ent eras of the volcanic eruptions.

ThiS island escapes all definition, because of
the multitude of sensations caused by Its untouch-
ed beauty. It seems like a primitive world, almost
lunar, with strong contrasts of colour, where the
cultivated lava fields alternate with plots of earth
with subtropical vegetation and the lava rocks
contrast with the white of the beach A fantastic
view greets the camel-mounted tourist who climbs
the picks of Timanfaya, gigantic "Mountain the
Fire". Here the tourism has been developed in
complete respect of the countryside allowing the
islands integrity and speCial nature to be rnaintain-
ed. Excursions can be organized at moderate
cost.

The 14th ESARDA meeting is the fourth in the
series of restricted meetings which in these years
alternate with the full ESARDA Symposia with
open participation The preceding restricted meet-
ings were held in 1986 in Copenhagen in 1988 in
Karlsruhe (KfK) and in 1990 in Como. ln 1993 a
general ESARDA Symposium will be held in a
place to be decided.
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Who's Who in ESARDA?
(as of 21 st May 1991)

Chairman1991 B.H. Patrick, AEA Technology, Harwell, UK
Appointed chairman 1992

To be appointed from Denmark

Secretary C. Foggi, CEC, JRC-Ispra, Italy

Permanent Symposium

Scientific Secretary L. Stanchi, CEC, JRC-Ispra, Italy

ESARDA Steering Committee

G. Andrew, Dept. of Energy, UK

C. Beets, Ministry of Foreign Affairs, Belgium

CP. Behrens, Kernkraftwerk Philippsburg, F.R. Germany
(Observer)

M.J.C. Charrauft, CEC Brussels, Belgium

M. Cuypers, CEC, JRC-Ispra, Italy

G. Déan, CEA Fontenay-axu-Roses, France
pp De Regge, CEN/SCK Mol, Belgium

S. Finzi, CEC Brussels, Belgium

C. Fizzotti, ENEA Casaccia, Italy

P Frederiksen, Risoe, Denmark

A G/oaguen, EDF, France

W Gme/in, CEC, Safeguards Directorate, Luxembourg

R. Hows/ey, BNFL Risley, UK

F Maccazzofa, ENEA DISP, Italy

R. Kroebef, KfK, Karlsruhe, F.R. Germany

J.M. Leb/anc, Belgonucléaire, Belgium

G. Le Goff, CEA Paris, France

T.T. Nielsen, Ministry of Energy, Denmark

B.H. Patrick, AEA Technology, Harwell, U.K.

F Pozzi, ENEA Saluggia, Italy
J. Regnier, COGEMA, France

H. Remagen, BMFT, F.R. Germany

J. Sánchez, Ministerio de Industria, Comercio y Turismo, Spain

G. Stein, KFA Jülich, FR. Germany

A Velilla, CIEMAT, Spain

AM. Versteegh, ECN Petten, Netherlands

ESARDA Board

pp De Regge, CEN/SCK Mol, Belgium

G. Déan, CEA Fontenay-aux-Roses, France

S. Finzi, CEC Brussels, Belgium

C. Fizzotti, ENEA Casaccia, Italy

C. Foggi, CEC, JRC-Ispra, Italy

W K/öckner, CEC, Safeguards Directorate, Luxembourg
(Observer)

R. Kroebef, KfK Karlsruhe, F.R. Germany

T.T. Nie/sen, Ministry of Energy, Denmark

B.H. Patrick, AEA Technology, Harwell, UK

J. Sánchez, Ministerio de Industria, Comercio y Turismo, Spain

AM. Versteegh, ECN Petten, Netherlands

ESARDA Coordinators

WGo Bahm, KfK, Karlsruhe, F.R. Germany

R. Carchon, CEN/SCK Mol, Belgium

M. Cuypers, CEC, JRC-Ispra, Italy

M. Dionisi, ENEA Casaccia, Italy

P Frederiksen, Risoe, Denmark

Mrs. F Garcia, CIEMAT, Spain

R.J.S. Harry, ECN Petten, Netherlands

T.L. Jones, AEA Technology, Dounreay, U.K.

Miss M. Neuilly, CEA Cadarache, France

R. Schenkel, CEC, Safeguards Directorate, Luxembourg

Working Group Convenors

Techniques and Standards for Non-Destructive Analysis (NDA)
S. Guardini, CEC, JRC-Ispra, Italy

Techniques and Standards for Destructive Analysis (DA)
P De Bièvre, CEC, JRC-Geel, Belgium

Reprocessing Input Verification (RIV)
T.L. Jones, AEA Technology, Dounreay, UK

Containment and Surveillance (C/S)
B. Richter, KFA Jülich, F.R. Germany

Low-Enriched Uranium Conversion/Fabrication Plants (LEU)
PPA Boermans, FBFC, Belgium

MOX Fuel Fabrication Plants (MOX)
G. Le Goff, CEA Paris, France

ESARDA Bulletin Editor

L. Stanchi, CEC, JRC-Ispra, Italy
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Near Real Time Materials Accountancy
How to Begin to Resolve Anomalies

Barry J. Jones

British Nuclear Fuels plc
Risley Warrington UK WA3 6AS

Abstract

To date, work has been aimed towards develo-
ping the best possible sequential testing proce-
dure for detecting anomalies in streams of mate-
rials accountancy data. When such a test
procedure is used as part of a materials control
system, it will be the effect which will be observed
when the test signals an alarm and the operator
will want to know the possible causes. Therefore,
before sequential testing procedures can be used
for practical purposes of materials control, further
development is necessary.

Suppose a test is designed for a particular
plant. When a singie stream of materials ac-
countancy data is processed and subjected to
the near real time materials accountancy test
procedure, there may come a time when an
anomaly is signalled. There is no easy way of
attributing such an effect to a specific cause. The
anomaly could have resulted from a number of
possible causes or it could be just a false alarm.
The problem addressed in the paper is how to
begin to resolve such questions.

Introduction

An earlier paper1 described how a near real
time materials accountancy (NRTMA) system can
be broken down into a number of modules, each
with a clearly defined function. Some modules will
need to be custom-designed for the particular
plant concerned because of, for example, the
need to access the plant data-base. Other modu-
les are versatile and, therefore. capable of being
installed as part of any NRTMA system. This
paper concentrates on two such modules: - for
statistical analysis, and for anomaly resolution.

The literature contains many reports of sequen-
tial tests which have been developed for the eva-
luation of streams of materials accountancy data.
Only one procedure, which uses SITMUF2 and
the joint Page's test (the Joint Test), has emerged
which is versatile in detecting abrupt and protrac-
ted losses, and which has a good overall respon-
se. In a series of earlier publications3-6, it has been
clearly demonstrated that the Joint Test is superior
to all the other tests which have been published.

Suppose a Joint Test is designed for a particular
plant. When a single stream of materials account-
ancy data is processed and subjected to the Joint
Test, there may come a time when an anomaly is
signalled. This means that, allowing for the false
alarm probability which has been specified when
setting up the Joint Test, the data stream appears

to be inconsistent with there being no loss of
material.

There is no easy way of attributing the alarm
from the Joint Test to a specific cause. The ano-
maly could have resulted from a number of assi-
gnable causes or it could be just a false alarm.
What is the cause? Any test procedure is insuffi-
cient on its own; a follow-up anomaly resolution
procedure is essential.

Once the Joint Test has signalled an alarm,
subsequent investigation is necessary to try and
explain why the alarm occurred. The purpose of
the anomaly resolution procedure is to provide
evidence of the size and duration of the irregularity
which caused the alarm, rather than to indicate
the physical form or location of the material invol-
ved. Such evidence cannot, in itself, prove the
cause of the alarm but rather suggest the most
profitable courses of follow-up investigations.

What is Anomaly Resolution?

Anomaly resolution presents another instance of
the most common problem that has to be tackled by
the applied scientist. A set of data has been obser-
ved, and there is a wish to model mathematically the
process which might have produced it. The usual
approach would be to suggest a plausible form of
model for the process and for producing the data,
andthen, byfitting that model to the data, the model's
parameters would be estimated.if the fit is good, the
model would probably be accepted. If the fit is poor,
there are two possibilities:- either there is a great deal
of random variability or measurement error in the
data, or the choice of model form is inappropriate.
Should the latter be the case, the procedure might
be tried several times with different plausible models.

For example, when faced with a series of data
on the rate of decay of a radioactive isotope, an
exponential curve would probably be proposed as
the model, and then the best curve fitted using the
least squares method. If the fit is good, the half-life
of the isotope could then be calculated from the
fitted curve. When fitting calibration data, a
straight line might be tried first, and higher order
polynomials moved onto if the simple model gave
a poor fit. ln this case, care must be taken not to
go too far. It is always possible to postulate a
model which will give a perfect fit; a polynomial of
order n will fit exactly through n + 1 points.

ln the case of anomaly resolution. the operator,
faced with the balances from a number of balance
periods and wanting to postulate a model to fit
these data, encounters two problems. The first
problem is deciding what kind of model to propo-
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se. An obvious choice is that there may have been
an abrupt loss in period 1, or in period 2, and so
on. I~nother possibility, often considered in the
literature, is that a uniform loss has begun in
period x and ended ln period y. The operator can
attempt, in principle, to fit these models which
represent events which are possible. ln practice,
anomalies in the data are more likely to occur
because of a gross inventory mismeasurement
which will show up as again (or loss) in one penod
followed by a loss (or gain) in the next, or because
of a throughput determination haVing been assi-
gned to the wrong balance period. The second
problem is that. even if the choice of model is
correct, a series of independent observations is
needed to fit the model to the data. The MUF
series is not made up of independent items. The
SITMUF series does consist of independent
items. all with the same variance. Therefore, if
plausil)le models can be thought of for SITMUF,
they can be fitted using standard least squares
techniques. ln other words. there is a need to
examine those kinds of SITMUF patterns which
can appear under the common scenarios discus-
sed above.

The Plant Model

SITMUF patterns depend on various pla1t ope-
rating parameters. and on materials measure-
ment uncertainties, and will therefore be plant
dependent. Fortunately, this does not mean extra
work for the operator since the software used for
the Joint Test will also calculate these patterns.

Previous work36 has chosen a campaign
length of 240 days, divided into 40 balance pe-
riods of 6 days. The standard deviation of the
throughput measurement error per balance pe-
riod, T. set at 1 kg gives a standard deviation of
the campaign throughput measurement error of
6.325 kg. This, and the standard deviation of the
inventory measurement error, l, of 2 kg, is consi-
stent with predictions for the THORP materials
accountancy and control system. This plant model
will be used throughout the paper.

Characteristic SITMUF Patterns From
Various Perturbations

Expected SITMUF Patterns
For any plant which is suffering no loss of

material, the expected value of the SITMUF stati-
stic, each period, IS zero. Once a loss occurs, the
expected SITMUF values are no longer zero. For the
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NEAR REAL TIME MATERlALACCOUNTANCY

chosen plant model, Figures 1, 2 and 3 illustrate
the expected behaviour of the SITMUF statistic
in responseto an abrupt loss of 10 kg in period4,
in response to a protracted loss of 10 kg spread
uniformly over periods 2 to 4, and in response to
an inventory measurement error of 10 kg which
resu~s in an increased MUF for period 4, followed
by a correspondinglyreduced MUF for period5.

Figures 1, 2 and 3 are quite different from one
another, and reflect the different types of loss or
error. If there is a characteristic pattern in the
SITMUF values corresponding to a given loss or
error scenario, it seems worthwhile to examine
SITMUF values in an attempt to work backwards
to the losses or errors which caused them.

Application of the Joint Test 2 3 4
Period

5 76 8

The anomaly resolution procedure is invoked
once an alarm has been signalled by the chosen FIG. 1, Expected SITMUF Values for an Abrupt Loss
sequential test. The Joint Test is made up of two
components, each of which is a Page's test. For
these components the two test statistics, 81 and
82, are defined by

S10 = 0
S20=0
S1i = max (0,S1i-1 + Yi - K1) i> 0
82i = max/D, S2i-1 + Yi - K2) i> 0

where Y1, Y2,
'"

Yi is the series of SITMUF values
generated from MUF1, MUF2, , MUFi. The Joint
Test is applied such that an alarm is given if S1 i >
H1' Otherwise, no alarm is given unless S2i ~ H2.
For the plant model described above, and a cam-
paign false alarm probability of 5%, it has already
been shown6 that a suitable Joint Test has the
following parameters:-

H1= 0, K1= 3.4758, H2 = 7.8, K2 = 0.24389

Resolution of Some Anomalies

Three worked examples are now given to demon-
strate how the anomaly resolution procedure is ap- FIG. 2. Expected SITMUF Values for a Protracted Loss

plied.ln eachexample, the JointTest alarms in period
4, but the anomaly resolution procedure leads to
quite different conclusions for each example.

Example 1

The Joint Test alarms in period 4. Assume, in
the first instance, that there has been an abrupt
loss in period 4. It has already been pointed out
that, for every loss scenario, there is an expected
SITMUF sequence. Table Il shows, for two sizes
of an abrupt loss in period 4, the expected SIT-
MUF values for the first 5 periods. FIG.3. ExpectedSITMUF Values tor an Inventory Error

Table I. Observed SITMUF Values (Example 1)
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Period
Expected 81TMUF Values

Loss of 8 kg Loss of 10 kg

1 0.000 0,000

2 0.000 0.000

3 0.000 0.000

4 3.153 3.942

5 1.948 2.435

Loss (kg) Sum of Squares (85)

6.0 12.835

7.0 11.831

8.0 11.256

9.0 11.110

10.0 11.394

11.0 12.107

12.0 13.249
Expected 51TMUF Values

Period Total Loss of Total Loss of
10 kg 12 kg

1 0 0

2 1.384 1.661

3 2.254 2.705

4 2.737 3.284

5 1.691 2,029

Table Il: Expected SITMUF Values for an
Abrupt Loss in Period 4

It will be shown later that study of the first 5
periods (rather than only 4) is required in order to
be able to distinguish an alarm arising from an
abrupt loss from one arising from, for example, an
inventory measurement error. Consider, first, the
expected 81TMUF values corresponding to an
abrupt loss of 10 kg in period 4. How well do these
values match the observed 81TMUF values? The
expected values for a loss of 10 kg and the
observed values, up to period 5, are plotted in
Figure 4. The problem which remains is to find a
measure of how well the sequence of expected
81TMUF values fits the sequence of observed
81TMUF values. One way of doing this is to cal-
culate the differences between corresponding va-
lues in the two sequences, and then to calculate
the sum of the squares of these differences, S5,
for the first 5 periods.

Then,
5

Â

85 = L (8ITMUFi - 8ITMUFi)2
i = 1

For an abrupt loss of 10 kg inperiod 4,
85 = (0.576 - 0)2 + (1.587 - 0) + (2,864 - 0)2

+ (3.605 - 3.942)2 + (1.956 - 2.435f
= 11.394

Least Squares Fit
Now the value of 85 will change if the sequence of

observed SITMUF values is compared with a se-
quence of expected 81TMUF values for a different
size of abrupt loss. Table III shows the sum of
squares for various sizes of abrupt loss in period 4.

Table III: Sum of Squares for Various Sizes of
Abrupt Loss in Period 4 (Example 1)

The same data are plotted in Figure 5 and it can
be seen that the sum of squares has a minimum
value for a loss of just under 9 kg.

By calculation, the sum of squares is found to
have a minimum value of 11.105, corresponding
to a loss of 8.839 kg. Consider, next, the possibility
that the alarm in period 4 had been caused by a
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loss which began in an earlier period. Table IV
shows, for two examples of a loss spread unifor-
mly over periods 2 to 4, the expected 51TMUF
values for the first 5 periods.

Table IV: Expected SITMUF Values for a Protrac-
ted Loss Spread Uniformly over Periods 2 to 4

10 11

How well does such a scenario match the obser-
ved 81TMUF values? The expected values for a
totalloss of 12 kg and the observed values, up to
period 5, are plotted in Figure 6.

For a protracted loss of 12 kg spread uniformly
over periods 2 to 4,

S5 =: (0.576 - 0)2 + (1.587 - 1.661)2 T

(2.864 - 2.705)2 + (3.605 - 3.284)2
+ (1.956 - 2,029)2

=0.471

Now the value of 55 will change if the sequence
of observed 81TMUF values is compared with a
sequence of expected 81TMUF values for a diffe-
rentsize of protracted loss. Table V shows the sum
of squares for various sizes of protracted loss
spread uniformly over periods 2 to 4.
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loss (kg) Sum of Sq uares (Ss)

9.0 2.639

10.0 1.569

11.0 0.847

12.0 0.471

13.0 0.442

14.0 0.760

15.0 1.425

16.0 2.437

First Period Last Period of Loss
ofloss 1 2 3 4

17.350 16.213 13.828 9.620
(1.618) (2.743) (4.509) (7.020)

2 15.313 11.875 6.206
(3.238) (5.424) (8.371)

3 9.984 2.562
5.838) (9.252)

4 0.375
(9.154)

First Period Last Period of Loss
of Loss 1 2 3 4

16.580 11.098 5.246 1.596
(5.410) (7.668) (10.075) (12.173)

2 9.857 3.344 0.412
(7.875) (10.551) (12.583)

3 5.409 3.295
(9.511) (11.541)

4 11.105
(8.839)

Period Observed SITMUF Value

1 -0.287

2 -0.143

3 0.477

4 3.497

5 2.409

Period Observed SITMUF Value

1 0.477

2 -0.148

3 -0.579
4 4.083

5 -1.540

NEAR REAL TIME MATERlALACCOUNTANCY

Table V: Sum of Squares for Various Sizes of
Protracted Loss Spread Uniformly over Pe.
riods 2 to 4 (Example 1)

By calculation, the sum of squares is found to have
a minimum value of 0.412, corresponding to a total
loss of 12.583 kg. There are, of course, a number of
plausible models. Consider all the possibilities for
abrupt loss, and uniform protracted loss, which end
by or before period 4. Such losses are accommoda-
ted in Table VI which shows, for each loss scenario,
the least squares value and, in parenthesis, the
corresponding loss (in kilograms).

Table VIII: Least Squares Values, and Corresponding Losses, for Various Plausible Loss Models
(Example 2) [Sum of Squares to Period 5J

ft$ for the first example, consider all the possibili-
ties for abrupt loss, and uniform protracted loss,
which end by or before period 4. Such losses are
accommodated in Table VIII which shows, for
each loss scenario, the least squares value and,
in parenthesis, the corresponding loss (in kilo-
grams).

Table VI: Least Squares Values, and Corresponding Losses, for Various Plausible Loss Models
(Example 1) [Sum of Squares to Period 5]

Itcanbeseenfrom Table VI that the smallest least
squaresvalue (0.412)is obtained for the modelof
a protracted loss spread uniformly over periods 2
to 4. This means that, from the models which have
been considered, this is the one which best fits the
observed data. Furthermore, the corresponding
estimate of the loss for this preferred model is
12.583 kg.

The data for this example were simulated using a
protracted loss of 12 kg spread uniformly over
periods 2 to 4.

Example 2

Table VII: Observed SITMUF Values (Example 2)

It can be seen from Table VIII that the smallest
least squares value (0.375) is obtained for the
modelof an abrupt loss in period 4. This means
that, from the models which have been consi-
dered, this is the one which best fits the obser-
ved data. Furthermore, the corresponding esti-
mate of the loss for this preferred model is
9.154 kg.
The data for this example were simulated using
an abrupt loss of 10 kg in period 4.

Example 3

Table IX: Observed SITMUF Values (Example 3)

As for the previous examples, consider all the
possibilities for abrupt Joss, and uniform protrac-
ted loss, which end by or before period 4. Such
losses are accommodated in Table X which
shows, for each loss scenario, the least squares
value and, in parenthesis, the corresponding loss
(in kilograms).

There seems to be a problem WIThthis example.
ln contrast to Examples 1 and 2, there is not a
smallleast squares value for any of the models.
ln other words, none of the models seems to fit
the observed SITMUF values. The observed data
(Table IX) show a large positive value in period 4,
followed by a large negative value in period 5. This
pattern of data is similar to that displayed in Figure
3 for an inventory error at the end of period 4.
Table XI shows, for two examples of an inventory
error atthe end of period 4, the expected SITMUF
values for the first 5 periods.
The expected values for an inventory measure-
ment error of 10 kg and the observed values, up
to period 5, are plotted in Figure 7.

Table XII shows the sum of squares for various
sizes of inventory measurement error at the end
of period 4.
By calculation, the sum of squares is found to
have a minimum value of 0.585, corresponding to
an inventory measurement error of 10.361 kg.
The data for this example were simulated using
an inventory measurement error 10 kg at the end
of period 4.
Example 3 (reworked)
This last example is now reworked but, this time,
only calculating the sum of squares up to period
4, the period of the alarm. Table XIII is analogous
to Table X except that the former includes the leàst
squares values, 54, instead of Ss.

The natural conclusion from Table XIII is that the
low least squares value (0.585) is evidence of an
abrupt loss in period 4. ln practice, such losses of
material will be rare. A more likely occurrence is a
gross inventory mismeasurement or assignment
of a throughput determination to the wrong balan-
ce period. Detection of such events is a vita!
element of good materials control and account-
ancy and it is important that the operator does not
embark on what will turn out to be fruitless follow-
up investigations because he has drawn the
wrong conclusion from the initial anomaly resolu-
tion procedures. One way of reducing this risk,
when beginning to resolve anomalies, is by taking
account of data in the next period after an alarm.
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First Period Last Period of Loss
of Loss 1 2 3 4

1
19.047 19.070 18.710 17.262
(1.224) (1.396) (2.027) (3.651)

2
19.264 18.741 16,754
(1.115) (2.004) (4,069)

.....
18.367 15.269

3 (2.251) (4,859)
.'

.'. .' 12.529
4 (5,750)

Error)kg) Sum of Squares (55)

7.0 2.589

8.0 1.574

9.0 0.914

10.0 0.608

11.0 0.658

12.0 1.062

13.0 1.820

14.0 2.934

Period
Expected SITMUF Values

Error of 8 kg, Error of 10 kg,

1 0,000 0,000

2 0,000 0000

3 0.000 0,000

4 3,153 3,942

5 -1,187 -1.483

First Period Last Period ot Loss
of Loss 1 2 3 4

1 16.286 16.168 15349 12,316
(1.599) (1,984) (3.016 (5,638)

2
16.394 15.207 10,811
(1.756) (3,175) (6,669)

3
14.401 7.225
(3.568) (8,327)

4
0.585

(10.358)

Table X: Least Squares Values, and Corresponding Losses, for Various Plausible Loss Models
(Example 3) [Sum of Squares to Period]

Table XII: Sum of Squares for Various Sizes of
Inventory Error at the End of Period 4

ESARDA EiULLETIN

Table XI: Expected SITMUF Values for an In-
ventory Error at the End of Period 4

Table XIII: Least Squares Values, and Corresponding Losses, for Various Plausible Loss Models
(Example 3) [Sum of squares to Period 4]

5 o Observed SITMUF Sequence (Example 1)

G'---"-'---
Expected SITMUF Sequence (12 kg Loss over Periods 2 to 4)
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FIG. 6. Comparison of Observed and Expected SITMUF Values

Concluding Remarks

The paper concentrates on those modules for
sequential testing and anomaly resolution which
are versatile and, therefore, capable of being
instal/ed as part of any NRTMAsystem. When the
Joint Test gives an alarm, there is no easy way of
attributing that alarm to a specific cause. Any test
procedure is insufficient on its own; a fol/ow-up
anomaly resolution procedure is essential.

The paper approaches the concept of anomaly
resolution by treating it as an exercise in mathe-
matical model/ing. Expected SITMUF sequences
can be derived using a model and incorporating
plausible losses or errors. ln order to measure
how well a particular sequence of the expected
SITMUF values fits the sequence of observed
SITMUF values, the differences between corre-
sponding values in the two sequences, up to the
period after the alarm from the Joint Test are

calculated, squared, and added to one another.
For each plausible loss/error model. the parame-
ters can be chosen so that the sum of squares is
minimized. The modei most likely to match the
observed data is the one for which the least
squares value is the smallest.

This approach of mathematical modelling is made
possible because of the properties of the SITMUF
statistic Firstly, sequences of expected SITMUF
values can be calculated for various plausible
loss/error models Secondly, the SITMUF series
is made up of independent items with the same
variance so that observed and expected sequen-
ces can be compared by the method of least
squares. The approach is applicable to any plant.
SITMUF values are plant dependent but this is
taken care of by the Joint Test

When an alarm has occurred, the anomaly reso-
lution procedure can make good estimates of the
totallass, the typeof loss pattern, and the periods
in which the loss occurred. The procedure can
also identify inventory measurement errors and
distinguish them from reallasses. This has been
iliustrated by a range of worked examples.

Whilst the paper shows the sound basis for an
anomaly resolution procedure, more develop-
ment is required to produce a comprehensive
procedure for operational purposes. Two areas tor
further work can be already identified. Firstly, Iho-
se models which best fit the observed data should
be ranked, Secondly, standard errors associated
with loss/error estimates need to be calculated.
The necessary mathematical methods to support
these developments have already been identified,
The next step is to incorporate these methods into
efficient working procedures.
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5 0 Observed SITMUF Sequence (Example 3)
[3 Expected SITMUF Sequence (10 kg Error at the End of Period 4)
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FIG. 7. Comparison of Observed and Expected SITMUF Values

References

/1/ BARRYJ. JONES - Near Real Time Mate-
rials Accountancy: Myths and Misconcep-
tions - Proceedings of the Eleventh Annual
ESARDA Symposium on Safeguards and
Nuclear Material Management, 357 (1989)

121 A J WOODS & D J PIKE - Use of the
Standardised ITMUF for Choosing Parame-
ters of Sequential Tests for Protracted and
Abrupt Diversions- Proceedings of the Fifth
Annual ESARDA Symposium on Safe-
guards and Nuclear Material Management,
369 (1983)

13/ BARRY J JONES - Comparison of Near
Real Time Materials Accountancy Using
SITMUF and Page's Test with Conventional
Accountancy - Proceedings of the Ninth
Annual ESARDA Symposium on Safe-
guards and Nuclear Material Management,
255 (1987)

/4/ BARRY J JONES - Near Real Time Mate-
rials Accountancy Using SITMUF and a
Joint Page's Test: Dependence of Respon-
se on Balance Frequency- Proceedingsof
the Third American Nuclear Society Confe-
rence on Facility Operations - Safeguards
Interface, 242 (1987)

151 BARRY J JONES -Near Real Time Mate-
rials Accountancy Using SITMUF and a
Joint Page's Test: Comparison with MUF
and CUMUF Tests - ESARDA Bulletin, 15,
20 (1988)

161 BARRY J JONES -Near Real Time Mate-
rials Accountancy Using SITMUF and a
Joint Page's Test: Improvement of the Test
- ESARDA Bulletin, 16, 13 (1989)

8



ESARDA E3ULLETIN

Image Processing Methods for Scene Change Detection and
Motion Detection
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Abstract

The selection of reduced pixel sets and their
use in three different algorithms for the detection
of local scene changes is considered.

The three algorithms are compared to reveal
their specific advantages and disadvantages for
practical scene change detectors. The combina-
tion of scene change detection with programma-
ble, timer controlled sequences of pixel sets al-
lows for the selective detection of àbjects moving
within certain speed limits into a given direction
only.

Introduction

Optical sUNeillance plays an important role in
nuclear safeguards, especially in inaccessible
areas or in storage facilities for nuclear materials.
Usually, optical surveillance is performed by recor-
ding video images from one or more TV cameras
looking at safeguards relevant areas.

The increasing amount ofrecorded sUNeillance
data (presently several million images per year)
suggests the use of computerized vision systems
either for the partial automation of the reviewing
task, or for data reduction during the recording
process. Such systems are based on one of two
possible operating principles. The first one, to
which this paper is related, detects changes inside
areas of interest in video images. The second,
which is based on the recognition of objects, is not
considered here.

With the advent of plug-in image processing
boards for the PCIAT bus, it became possible to
implement low-cost, PC-based image processing
systems from "off the shelf" hardware. Such sys-
tems are very flexible because they can easily be
adapted to different applications by merely chang-
ing the program running on the PC. The image
processing hardware consists of a digitizer which
samples the video signal, a frame buffer to store
the digital samples as individual picture elements
(pixels), and a digital to analogue converter which
generates a video output signal from the stored
pixels. Since a program running on the PC has
access to all pixels in the frame buffer, it also has
full image processing capabilities. Some popular
image processing boards offer frame buffers for
multiple video images with resolutions of 512*512
pixels and with 256 grey levels per pixel.

A possible application for such a PC-based
image processing system is as a scene change
detector or motion detector for the above mentio-
ned optical surveillance in nuclear safeguards.

Not only as a reviewing aid, but also as front-end
unit to control the selective recording of relevant
scenes.

Different image processing techniques can be
applied for the detection of scene changes. How-
ever if a detector must be able to detect changes
in a single frame of a live video signal. it must be
very fast. To obtain the necessary speed with 'off
the shelf" hardware, simple detection algorithms
must be used which need only a limited number
of pixels for processing. ln the next chapter, the
selection of representative sub-sets of pixels from
images is described first. Thereafter, the charac-
teristics and performance of three simple detec-
tion algorithms are compared. Finally, the use of
timer-controlled mask sequences forthe selective
detection of objects moving into a given direction
is explained.

The Selection of Examination Sets

It is often not necessary to process all pixels of
an image. Either because only a limited image
area is of interest, or because a fast detector
response requires a substantial reduction of the
number of pixels to be processed. ln either case,
ordered subsets of pixels must be sampled from
an image to form one or more examination sets.
Whereas the original image is a two-dimensional
function of grey levels, an examination set can
often be treated as a one dimensional array of
grey levels and be interpreted or visualized as a
simple, plain graph. It is also called the profile of
the examination set.

The selection of pixels for an examination set is
a sampling process based on a logical function
which has two possible states for each pixel,
TRUE or FALSE. If TRUE, the pixel concerned is
included in the examination set, otherwise it is
neglected. The following five examples of exami-
nation sets use entirely different sampling rules.

- A well known examinationset is the rectangu-
lar area of interest (AOI). It contains all pixels
within a rectangular area defined by two dia-
gonally opposite corner points.

- The "grid line" set contains all pixels along
equally spaced, horizontal and vertical grid
lines. It can be combined with the definition of
a rectangular AOI to cover a limited region
only.

- The "grid point" set contains only equally
spaced grid points and is a strongly reduced
subset of the grid line set.

- A "polyline" is an examinationset that contains
only the pixels along the straight line sections

between neighbOUring elements of a vertex
sequence which is defined in a vertex table.
The profiles of polylines have a real, physical
meaning, namely the grey level as a function
of the distance along the polyline. f:igure 1 is
the graphic display of a profile captured during
video tape revieWing.

- It is also possible to select pixels via a two-di-
mensional look-up table. This allows for the
creation of examination sets that carlnot easily
be defined by analytical functions or by simple
geometrical rules.

2551

o
Min: 14

Mox : 161

Mm: 49

StDv: 41

280

X-ings: 4

Siscof: 0,8729

Profile of polyline nr, 3

FIG.I. Example of a polyline profile

The first three of the above examples can easily
be implemented ln hardware. Some earlier motion
detectors, realized with special hardware, were
based on a few rectangular AOls With user defin-
able positions and sizes. More recent, micro-com-
puter based detection systems often divide the
entire image into a large number of small, rectan-
gular AGis which can be individually activated or
disactivated by the user.

Polylines are most suited for software-based.
general-purpose systems which use fast routines
to read the pixels along the polylines from the
frame buffer into the computer memory. Such
systems leave the user completely free to create
polylines of any shape in any position and allow

9



SCENE CHANGE DETECTION AND MOTION DETECTION

the surveillance of larger image areas without the
penalty of a very large number of pixels to be

processed. Examples of possible po/yline shapes
are shown in figure 2. The "scanner" line is intere-
sting because it acts like a reactangular AGI.

In thefollowingtext the term polyline will systemati-
cally be used to refer to an examination set of any
type, at least as long as there is no need to emphas-

ize a different behaviour of a specific type.

Detection Algorithms

Although the three algorithms are described in
terms of their use with polylines, the sampling
rules for these polylines are not considered here,
since they are not important for the understanding
of the algorithms proper. The following notations
are used to distinguish various polylines in two
different images.

/f there are k polylines in the image X, they are
designated X1, containing N1 pixels, to Xk with Nk
pixels, and the i-th pixel of the j-th polyline is
named Xj(i). The corresponding polylines in the
reference image Yare named Y1 through Yk, and
the i-th pixel of the j-th line is Yj(i).

Detection Based on Changes in the Nor-
malized Means

The simplest detection algorithm calculates first
the normalized mean intensities of the individual
polyline profiles and then their ratios for the corre-
spondingpolylines in the two images X and Y If
one ofthese ratios deviates from 1.0 by more than
a given amount, the corresponding polyline enters
a warning state. The following expressions show

that this concept requires minimal computational
efforts.

The sums of the grey /evels of the pixels in the
j-th polyline in the images X and Yare designated
AXi and AYi. Thus,

Nj

AXj = 1: Xj(i) [1]

Î=1

and

Ni
AYj = L:Yj(i)

i=1

and the mean grey levels of these polyline profiles
are

AX_ J
Xj=-

Ni

and

AY_ )
Yj= -

Nj

The ensemble sum over all pixels of all polyline
profiles in the image X is

k Ni
EX =L: L: Xj(i) [5]

j=1 i=1

" OJ ti"-. ~ I'.- -.. ~,., .

!21

'"

/'--_U--~---~---à.

OJ = Trail Œl = Scanner

FIG. 2. Example of typical polylines

rn = Box rn = Split

and in image Y

k Nj

EY = L: L: Yj(i)

j=1 i=1

[6]

The ratio between the normalized means of the
j-th polyline profiles in the images X and Y is
therefore

[2]

Xj EY
RMj=-. -

'Yj EY
[7]

If each polyline has its own threshold value
MthrU), with 0.0 < MthrU) < 1.0, the i-th polyline
enters the warning state if

RMi < Mthrü)
or 1/RMi < MthrU)

[3]

[4]

The simplicity of this algorithm makes it very
attractive for special hardware implementations.
Except for the final division operation, it only re-
quires adders and a few accumulator registers
and, in principle, thesumming process could even
be performed with gated analogue integrators.
Moreover, only the profile sums and ensemble
sum of the reference image need to be saved for
subsequent computing cycles, not the polyline
profiles themselves.

Detection Based on Changes in the Nor-
malized Variance

The second detection algorithm calculates first
the normalizedvariances of the individualpolyline
profi/esand then their ratios for the corresponding
polylines in the two images X and Ylf one of these
ratios deviates from 1.0 by more than a given
amount, the corresponding polyline enters a war-
ning state. The following description explains this
concept.

The means Xi and Yj of the individual polyline
profiles are again computed as shown in the
above expressions [3] and [4], but now also the
sums SXj and SYj of the squared deviations are
calculated as

Nj

SXj =L (Xj(i) - Xj}2

i=1

[8]

and

Ni
SYj=L:(Yi(i)- Yj)2

i=1

[9]

The variance of the j-th polyline profile in image
Xis

SXj
VXi=-

Nj-1
[10]

and the variance of the j-th polyline profile in image
Vis
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SY)

VYj=-
Nj -1

The ratio between the normalized variances is
obtained as

SXj

(Yi
J

RVj =--
=-SYj XJ

If each polyline has its own threshold value
Vthrü), with 0.0 < Vthrû) < 1.0, the j-th polyline
enters the warning state if

RVj < Vthrm
or 1/RVj < Vthrü)

This algorithm is less simple than that for the
normalized mean. It not only needs the addition
but also the squaring of the individual pixel values.
Nevertheless, only the means and the sums of
squared deviations of the polyline profiles in the
reference image need to be saved for subsequent
computing cycles, not the reference profiles them-
selves.

Detection Based on the Cross-correlation of
Polylines

The third detection algorithm calculates the
correlation factor for each individual polyline
profile in image X with its corresponding profile in
the reference image Y. If a correlation factor drops
below a given threshold, the corresponding
polyline enters a warning state. The following
description explains this concept.

First, the means Xj and Yj and the sums of
squared deviation SXj and SYj are computed as
shown in the above expressions [3], [4], [8] and
[9]. Thereafter, the sum of cross-products of the
polyline profiles XI and YI, which is a measure of
their co-variance, is calculated as

Nj

XYj =L: (Xj(r) - Xj). (Y1(ij - Yj)

)=1

which leads to the correlation factor

XYj
RC1=

-V (SXj.SYJ)

If each polyline has its own threshold value
CthrÜ)' with 0.0 < CthrQ) < 1.0, the j-th polyiine
enters the warning state if

RCj < Cthr(j)

This algorithm is the most computation in-
tensive of the three. It not only needs addition
and squaring operations on each pixel, but also
the calculation of the cross-product for each
pixel pair. Moreover, these cross-product calcu-
lations require that the entire profiles of the
polylines in the reference image remain avail-
able for subsequent computing cycles.

I

[11]
If the two terms in expression [15] are inter-

changed, a polyline enters the warning state if its
correlation factor exceeds the threshold value,
which means if there is a close match between the
profiles from the current and reference image. It
is therefore very easy to provide a means for
switching between a normal scene change detec-
tion mode and an optional scene matching mode.
For the latter mode, fixed reference profiles must
be memorized for all polylines, and the detector
must continuously compare these memorized
profiles with the profiles read from the images in
the video signal.

The scene matching mode is perhaps a que-
stionable feature for some video surveillance ap-
plications because it may fail to generate an alarm
if the matching pattern appears in the image at a
slightly different position than expected. On the
other hand, profile matching is a basis for simple
object tracking algorithms.

[12]

Common Properties of the Algorithms
The three detection algorithms described above

are auto-normalizing. This means that they are in-
sensitive to changes in overall scene illumination as
long as there is a linear relation between the ampli-
tude ofthe video signal and luminosity. Unfortunately,
many video cameras have a GAMMA-corrector in-
stalled which intentionally produces a nonlinear re-
sponse. The software in a PC-based scene change
detector can compensate for such nonlinearity if it
reprograms the input look-up table on the image
processing board accordingly, Another interesting
feature of a PC-based system is that it requires little
programming efforts to include all three detection
algorithms as run-time selectable options.

Comparison of the Detection Algorithms

The algorithm using the normalized means is
not only the simplest, it is also the easiest under-
stood by non-expert users. It is not based on an

[13] ---1

I

I

___J

I~-~~---l

I
I

I
I

L___~ ---.J

[14]

x = 1,0
VX = 0.0

2

X = 0.5
VX = 0.25

[15]

Ratio of normalized means RM:
Detection response:

Ratio of normalized variance RV:
Detection response:

Correlation factor RC:
Detector response:
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intrinsic property of a single polyline profile, but
relies on the existence of several profiles to form
the normalizing ensemble, Since its detection per-
formance is independent of the image contrast. it
can still successfully be applied when, due to a
lack of contrast, the two other algorithms might
produce too many nuisance alarms. On the other
hand, even large changes within a polyline profile
wili !Jo unnoticed if they do not affect U1eprofiles
mean intensity.

The algorithm based on changes in the nor-
malized variance, which is an intrinsic statistical
property of a polyline profile, makes the detector
sensitive to changes in grey level distribution With-
in a polyline profile, but not to changes outside the
polyline. However, changes within a proflie that do
not produce significant changes in variance, but
which might be characteristic for the displacement
of an object in front of a contrasting background.
will go unnoticed.

The detection method based on the ClOss-cor-
relation of polyline profiles is definitely the most
selective and most severe. It does not check a
single, intrinSICstatistical property of a profile, but
it compares the profiles of corresponding polylines
in imaqes X and Yon a pixel by pixel basis in order
to detect any significant pattern changes between
these profiles, However, a necessary condition for
the successful application of the clOss-correlation
technique is a suffiCiently large contrast within the
single polyline profiles, A too low contrast leads to
many nuisance alarms. A suitable measure for the
proper contrast in a polyline profile is its vanance,
which should be many times higher than the
variance of the inevitable image noise.

Figure 3 shows the same rectangular AOJ from
four different images in a sequence. Only three
grey levels are present, 00. 0.5 and 1,(J. The
image pattern were chosen to simplify the calcu-
lations of the means. variances and cross..corre-
lations, and to emphasize the different behaviour
of the three detection algorithms. ln the table of
figure 3, a change from one image to the next IS
marked' +. if the type of pattern change it produces

"~l--- T-

~II
'

,
LJ .ui

3

X =0.5
VX= 0.188

4

X = 0.5
VX = 0.188

2

0.5
+

0.0
-1-

0.0
+

FIG. 3. Response of detection algorithms to three classes of scene changes
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1

X =0.5
VX= 0.0

2

X = 0.5
VX= 0.1

1-2

Ratio of normalized means
Response:

Ratio of normalized variances
Response:

Correlation factor
Response:

FIG. 4. Examples of scene change detection

+

+

can be detected with the algorithm to which the
corresponding table row belongs. Else, a '-' is
shown.

Figure 4 is another illustration of the differences
between the three detection methods. The AOI
number 1 covers an area with a homogeneous
grey levelof 0.5, e.g. part of a concrete wall.
When a zebra with equally distributed black and
white stripes steps into the picture and stays in
front of the wall, a situation like in AOI number 2
arises. Since the mean grey level has not
changed, a detector based on the normalized
mean is unable to detectthisevent. On the other
hand, the variance changed considerably and
detectors based on the normalized variance or on
the correlation of profiles will respond with a warn-
ing. If the zebra moves inside the AOI, e.g. by
turning around, the situation becomes as shown
in AOI number 3. ln this ease, neither the mean
grey level nor the variance changes, and only the
detector based on the cross-correlation algorithm
issues a warning.

3

X =0.5
VX=0.1

2 - 3

+

A

I~

CD

Primary Masks

Using Detection Masks and Timed Mask
Sequences

The inner loop of a scene change detector is
rather simple. After a new video image has been
acquired, the detection algorithm uses the polyline
profiles ofthat image plus the information from the
reference image to establish which profiles have
changed and to set the warning pattern accord-
ingly. Thereafter, the new warning pattern is com-
pared with a group of detection masks. Each
detection mask is simply a user programmable list
of polylines which defines a possible alarm condi-
tion by specifying which combination of polylines
must be in the warning state to trigger an alarm.
Consequently, an alarm is generated if a match

11, \

between the warning pattern and a mask is found.
ln the usual scene change detection mode, gener-
ating an alarm also causes reference updating by
making the current image the new reference.

The clever use of detection masks, in combina-
tion with a suitable set of polylines, is the users
contribution to a satisfactory detection performan-
ce. An often successful technique for detecting an
activity is to create a set of polylines with profiles
that are ali changed by that activity, but which are
not subject to the same disturbances, and to
combine these polylines in a detection mask.
The concept of detection masks can be extended
to make a scene change detector only sensitive
to changes that "move" through an image in a
given direction within certain speed limits. Such
extension, which is independent of the detection
algorithm used and enhances the system perfor-
mance to that of a direction sensitive motion de.
tector, is based on timer-controlied sequences of
alarm conditions specified in secondary masks. If
a detection mask, which will now be ealled a
"primary detection mask", matches the warning
pattern, it does not trigger an alarm any more.
Instead, it activates its own sequence of seconda-
ry masks by passing control to the first mask in
that sequence. Each "secondary mask" consists
of the mask proper, which is again a user program-
mable list of polylines that defines an alarm con-
dition, plus programmable specifiers for a sleep

B

~£

@ @

Secondary Mask Sequences

Intervals
r ~

Wait Watch Mask

12,-,-.-,-,1

13,-.-, 1

1 , 1

FIG.5. Simple secondary mask sequence for the detection of objects from (eft to right
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interval and a watch interval. When a secondary
mask of a sequence gets control, it waits inactively
until its sleep interval has expired and then starts
its watch interval during which it responds to a
match with the warning pattern by passing control
to the next mask of the sequence. If the last
secondary mask of a sequence matches the war-
ning pattern during its watch interval, it triggers the
alarm. If the watch intervalof a secondary masks
times out without the occurence of a match, the
sequence ends prematurely without generating
an alarm. A very simple example of direction
sensitive motion detection is shown in figure 5,
where the polylines numbered 1, 2 and 3 reside
in the left, middle and right part of an image. A
primary mask specifying only polyline number 1
triggers a sequence of two secondary masks, the
first one specifying polyline 2 with sleep and watch
intervals of 1 and 5 seconds, the second polyline
3 with sleep and watch intervals of 4 and 6 se-
conds. This makes the detector only sensitive to
objects moving from left to right, like the rectangle
A in figure 5, which cover the distance between
the polylines 1 and 2 in 1 to 6 seconds and
between polylines 2 and 3 in~. to 10 seconds. The
triangular object B, moving from right to left in
figure 5, will not be detected. If a system allows
for 16 different polylines and for 16 different pri-
mary detection masks, each of them leading to a
sequence of up to 8 secondary masks, extremely

complicated sequences of alarm conditions can
be created.

Although the addition of timer controlled mask
sequences makes it possible to reduce the num-
ber of nuisance alarms by detecting objects mov-
ing into a given direction only, it also complicates
the installation of a scene change detector con-
siderably. The proper and successful use of
polylines, primary masks and sequences of sec-
ondary masks requires a sound knowledge of the
scenes under surveillance and of the type of
changes that should be detected.

Conclusion

The algorithms and image processing methods
described in the previous chapters were used in a
PC-based prototype scene change detector. Al-
though laboratory tests on its detection performance
produced very positive results, true performance
evaluation is only possible in field tests with real
surveillance data from installations or after an ex-
tended period of operation as "front-end" detector.

The successful setting-up of such a scene
change detector requires a considerable under-
standing of its operating principle. Not only for
creating the correctly shaped polylines or areas of
interest, but also to select the most suitable detec-
tion algorithm for the prevailing conditions, How-

ESARù;,\ BULLETIN

ever, once the installation dependent parameters
have been established and stored in a dedicated
data file, the use of the detector for routine revIew-
ing of video tapes becomes rather simple. If the
necessary knowhowand experience for the set-
up procedure are present, scene change detec-
tors based on the described Image processing
methods may become powerful tools for Video
reviewing and for front -end data reduction,
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Strategy Probability
(1,5) 0.035
(1,6) 0.167

(1,7) 0.005
(2,7) 0.195
(2,8) 0.004
(3,8) 0.200
(4,8) 0.046
(4,9) 0.163
(5,9) 0.170
(5,10) 0.015

Random Interim Inspections at Power Reactors · A Fable

M. Canty and R. Avenhaus

Part I. The Inspector who got Something for
Nothing

Once upon a time there was a safeguards
inspector who wanted to spend more time with his
family. The inspector was responsible for a power
reactor in a far away land, and had to journey there
once every year when the reactor was refuelled
as well as three times in between because of his
timeliness goal.

One day, during a refuelling inspection, the
inspector went to the reactor boss and said that
he would like, in future, to be allowed to perform
his interim inspections on the last day of every
month, instead of once every three months as had
been the case up until then. The reactor boss
frowned and asked the inspector if this was abso-
lutely necessary. The inspector replied that it was,
in the interest of increased safeguards effective-
ness and efficiency. Upon hearing these words,
the reactor boss sighed wearily and agreed to the
inspector's request. The inspector then asked the
reactor boss if he would be offended if he, the
inspector, didn't show up for some of the eleven
interim inspections. The reactor boss was puz-
zled, but said he would most certainly not be
offended. The inspector then left the power reac-
tor, rejoicing inwardly, saying "Now I shall only
have to make two interim inspections per year,
rather than three. I will stili attain my timeliness
goal and wili be able to spend more time with my
family!".

Upon arriving back at headquarters, the inspec-
tor went to his safeguards bosses and told them
of the deal he made at the reactor, and how he
intended to save one interim inspection per year.
At first the safeguards bosses were very angry,
saying that the inspector was mad to think that he
could get something for nothing and that his cal-
culations must be incorrect. But then they con-
sulted the literature and found a paper by two
obscure but reputable safeguards experts 111
which confirmed exactly the calculations of the
inspector. Then the safeguards bosses laughed
and said that the inspector was very wise, and if

he got much wiser he wouldn't have to work at all.
They rewarded him by making him responsible for
a second power reactor.

Thus end the sad taie of the inspector who got
something for nothing, but was not able to spend
more time with his family.

Part Il. The Inspector's Calculation

The inspector, being a man of mathematical
inclination, reasoned as follows: The reactor ope-
rator agreed to eleven interim inspection opportu-
nities per year. If, as the inspector intended, only
two interim inspections actually take place, then
there are precisely 55 possible inspection strate-
gies, the number of combinations of 11 things
taken two at a time. These strategies can be
denoted (1,2), (1,3), ", (10,11). Forexample, the
strategy (5,7) means that interim inspections oc-
cur at the end of the 5th and 7th months. The
operator, should he wish to divert a spent fuel
element, has only 11 sensible strategies, namely
to divert at the beginning of the i-th month, i = 11.
(He would be foolish to divert in the 12th month,
since he knows that the PlV inspection always
takes place, and therefore the detection time can-
not exceed one month.) For each strategy combi-
nation of inspector and operator, there is exactly
one detection time. For example for the combina-
tion {(5,7),6}, in which the operator diverts at the
beginning of the 6th month, the time to detection
is 2 months 12/. For the combination {(5,7),8} the
detection time is 5 months (because of the PlV
after the 12th month). Thus the inspector was able
to construct an 11 x 55 matrix which completely
described his problem as a finite two-person ze-
ro-sum game. He then applied the simplex algo-
rithm to find the saddlepoint of the game, which,
by virtue of van Neumann's minimax theorem
13,4/, he knew must exist. The solution told him
the optimal mixed strategy, i.e. with which prob-
ability he should choose one of the 55 possible
interim inspection strategies in any given 12

month period. (The non-zero inspection prob-
abilities for the solution are shown in Table I.) The
value of the game, that is the guaranteed payoff
to the inspector, turned out to be a detection time
of 2.97 months, just within his timeliness goal of
three months for irradiated direct use material.

Table I. Optimal mixed inspection strategy
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