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Abstract:

In nuclear safeguards, two measurement methods are 
sometimes used to infer nuclear material mass. Suppose 
that the method 1 and 2 estimates are 1.0 kg and 1.5 kg, 
respectively. Using generalized least squares (GLS) to 
combine two estimates has a  long history dating to its 
development by Gauss in 1795. In some settings, GLS 
exhibits curious behaviour, as described in Peelle’s 
Pertinent Puzzle (PPP) where the GLS estimate to combine 
the 1.0 and 1.5 estimates is 0.88. PPP was introduced in 
1987 in the context of combining two or more estimates of 
fundamental parameters that arise in nuclear interaction 
experiments. When PPP occurs, the GLS estimate is 
outside the range of the data, which has led to concerns 
that GLS estimation is flawed. This paper describes GLS 
estimation and PPP and points out that PPP can only 
occur if the two estimates are highly correlated and have 
different variances. Next, this paper shows that PPP can 
arise in an example from safeguards, in which the goal is 
to estimate the average nuclear material mass in N items. 
A sample of n1 items from the population of N  items is 
measured by a lower-quality assay method; a subsample 
n2 of the n1 sampled items is also measured by a higher-
quality assay method. This paper shows that PPP can 
arise in applying GLS to combine the estimates from the 
lower-quality and higher-quality assay methods, for any of 
three different measurement error models. Model A is the 
same as that used by a conventional safeguards model. 
Model B  is a modification of model A. Model C arises 
when both assay methods are calibrated using reverse 
regression, which in recent uncertainty quantification 
studies has been shown to outperform classical regression 
followed by inversion.

Keywords: combining two measurements, generalized 
least squares, Peelle’s pertinent puzzle

1. Introduction

Nuclear safeguards aim to verify that nuclear materials are 
used exclusively for peaceful purposes. To ensure that 
States are honouring their safeguards obligations, meas-
urements of nuclear material inventories and flows are 
needed. Statistical analyses used to support conclusions 
require uncertainty quantif ication (UQ), usually by 

estimating the relative standard deviation (RSD) in random 
and systematic errors associated with each measurement 
method [1-10].

This paper uses a  safeguards quantitative verification 
measurement example to show the importance of accu-
rate UQ of measurement errors and to show that although 
PPP can arise, GLS is still an effective option to combine 
two or more measurements of the same unknown true 
quantify.

The safeguards example modified slightly from [1] is as fol-
lows. The average nuclear material mass in N items is to 
be estimated by selecting n1 items at random and measur-
ing these items with measurement method #1, a non-de-
structive assay (NDA) device, such as a neutron multiplicity 
counter. The NDA device is then re-calibrated by randomly 
selecting a subset n2 of the n1 items and measuring them 
by measurement method #2, a destructive assay (DA) 
method, a balance and mass spectrometer. The problem 
is to estimate the population mean using the (n1 + n2) 
measurement results and to determine the variance of the 
estimate. As a specific example, the population may be 
N containers of U. The quality characteristic is the average 
mass of U-235.

Suppose in this example that the method 1 estimate is 1.0 
kg and the method 2 estimate is 1.5 kg. For a particular 
covariance matrix [2] that contains the variances of the two 
estimates on the diagonal (0.1134 and 0.0505) and the co-
variance between the two estimates on the off-diagonal 
(0.06), the GLS estimate that combines the 1.0 and 1.5 es-
timates is 0.88. Under what conditions is it reasonable for 
the GLS estimate to be less than the smaller of the two 
measurements of nuclear material (NM), or greater than 
the larger of the two measurements? As [3] explains, the 
0.88 estimate is reasonable if the two methods have large 
positive correlation and method 1 has smaller variance. 
Note that if the GLS estimate fell between 1.0 and 1.5, it 
would appear that the two methods have negative correla-
tion. Because 0.88 is smaller than both 1.0 and 1.5, it ap-
pears that the two methods have a strong positive correla-
tion, which is indeed the case. The unequal variances of 
method 1 and 2 provide information regarding whether the 
population NM mass is more likely to be less than the min-
imum or greater than the maximum of the two estimates. 
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In this case, the 0.88 estimate is closer to the method 1 
estimate, which has smaller variance than the method 2 
estimate.

This paper is organized as follows. Section two reviews 
GLS and PPP. Section three describes the safeguards ex-
ample from [1], and modifies the measurement error as-
sumptions from the example. Section four presents simu-
lation results and shows that PPP can arise in the 
safeguards example. Section five summarizes and empha-
sizes the importance of accurate UQ.

2. Generalized Least Squares (GLS) and 
Peelle’s Pertinent Puzzle (PPP)

2.1 GLS

GLS for parameter estimation has a long history dating to 
its development by Gauss and Legendre in the early 1800s 
[11]. PPP was introduced in the context of estimating fun-
damental parameters that arise in nuclear interaction ex-
periments [2]. In PPP, the GLS estimate is outside the 
range of the data, eliciting concerns that GLS is flawed 
[4,5]. Reference [3] defended GLS in the PPP context and 
provided an example when PPP can occur. Although PPP 
examples remain relatively rare, the present paper illus-
trates that PPP can occur in the example from [1], and also 
defends GLS as an effective option to combine two (or 
more) estimates of the same quantity, regardless of wheth-
er PPP occurs.

To illustrate GLS, denote the results of two assay methods 
on the same item as X1 and X2. GLS applied to X1 and X2 

provides the best linear unbiased estimate (BLUE) µ̂  of µ , 
regardless of whether PPP occurs [6]. Here, “best” means 
minimum variance and unbiased means that the average 
of µ̂  across many realizations of the same procedure is the 

true value µ . Note that one can write 
X
X

e
e

1

2

1

2









 =









 +











µ
µ

 

where 
e
e

R
R

1

2

1

2









 =









, or if there are also systematic errors, 

e
e

S
S

R
R

1

2

1

2

1

2









 =









 +









, where S1 is the systematic error of 

method 1, R1 is the random error of method 1, and similarly 
for method 2 [7-10]. This paper uses either µ  or T, depend-
ing on the context, to denote the true NM mass in an item. 
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(by setting the derivative of σ µ̂
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and solving for a1) or from projection matrix results in linear 
a lgebra. The resul t  is a c1 1= , where c c c c c G G GT T= = − = − − −( , ) ( , ) ( ) .1 2 1 1

1 1 11 Σ Σ 
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1 1 11 Σ Σ The estimate µ̂  is a weighted 
average of the two estimates, with weights summing to 1. 
In the case of uncorrelated measurements, with zeros on 
the off-diagonals of Σ, the weights are proportional to the 
i n v e r s e  o f  t h e  r e s p e c t i v e  v a r i a n c e s ,  s o 
a c1 1 2

2
1
2

2
2= = +σ σ σ/ ( ). If the measurements are uncorre-

lated, then the GLS estimate is guaranteed to be between 
the two estimates.

2.2 PPP

PPP i s  d e f i ne d  a s  e i t he r  ˆ ,µ x x max  > ( )1 2  o r 
ˆ min ,µ x x  < ( )1 2 . Sivia [12] gave a condition on Σ for which 

PPP cannot occur, expressed as: if ρ σ
σ

σ
σ
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2

2
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, ) then 

PPP cannot occur. In practice, entries in Σ are estimated, 
and so [3] shows that there are situations where it appears 
that PPP occurs when it does not, and vice versa. A theo-
rem in [3] shows that if a1 and a a2 11= −  have opposite 
signs, then PPP occurs:

Theorem 1. Suppose a1 and a a2 11= − have opposite signs. 
Then either ˆ ,µ x x max  > ( )1 2  or ˆ min ,µ x x  < ( )1 2 . That is, 
µ̂will always fall outside the range of x x1 2, ( ). The simple 
proof from [3] of Theorem 1 is given here.

Proof. First assume a1 1>  and a2 0< . If x1 < x2 then 
µ̂ = + < + =a x a x a x a x x1 1 2 2 1 1 2 1 1 because a2 0< . Similarly, 
i f x1>x2 then µ̂ = + > + =a x a x a x a x x1 1 2 2 1 1 2 1 1 because 
a2 0< . The proof is completed by next assuming a1 0<  
and a2 1> , and following similar steps.

3. The Safeguards Example

Jaech [1] used the following model, Eq. (1) for the better 
(DA) measurement and Eq. (2) for the worse (NDA) 
measurement:

 X T S Ri i i1 1 1= + +  (1),

 X T Ri i i2 2= +β  (2),

where Ti  is the true value (in kg) of item i, S1 is the system-
atic error of method 1, R i1  is the random error of method 1, 
β  is a constant that is estimated from calibration data. Es-
timation error in β̂  leads to systematic error in method 2. In 

this context, β̂  is estimated using ˆ
, ,β =

= =
∑ ∑X Xi
i
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which is a ratio of random variables. In many applications, 
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including this one, the variance of a ratio of random varia-
bles must be estimated by simulation because the esti-
mate of variance based on the linear first-term Taylor se-
ries approximation is not accurate [8-10]. Then, the method 

1 estimate of the population mean is ˆ /,µ1 1
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2
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∑X ni
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method 2 estimate is ˆ ˆ /,µ
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. This example in-

volves measurement error in both X1 and X 2, so the 
literature on “errors-in-predictors” is relevant [13,14] , and 
the variance in 

1
β̂

 is estimated by simulation in Section 4.

Rather than the way that GLS was presented in Section 2.1, 
GLS is often presented in the context of estimating β  in 
a linear regression relating response Y to, for example, pre-
dictors X1 and X2, denoted Y X e= +β   [6], where X  is 
a matrix with n rows containing X1 values in column 1 and 
X2 values in column 2. Perhaps this is why [1] did not recog-
nize this safeguards example as one for which known GLS 
results apply (as shown in Section 2.1). So, instead of ap-
plying known GLS results, [1] re-derived the GLS solution, 
by setting the derivative of an approximate expression for 
σ µ̂

2 with respect to a1 equal to zero to solve for the value a1 
that minimizes the approximate expression for σ µ̂

2. The ap-
proximation result from [1], which is evaluated in Section 4, 
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To arrive at Eq. (3), reference [1] ignored estimate error in 
β̂ , assumed β̂ β= , and applied standard error variance 
propagation to a linear Taylor-series approximation of µ̂ . 
Simulations in Section 4 show that estimation errors in the 
covariance matrix Σ can lead to the belief that PPP occurs 
when it does not, and vice versa.

This paper uses three distinct error models for example 1. 
Jaech’s [1] Equations (1) and (2) will be referred to as mod-
el A. As model B, instead of Equations (1) and (2), one 
could use the more common error models [7]:

 X T S Ri i i1 1 1= + +  (5),

 X T S Ri i i2 2 2= + +  (6),

where Eq. (5) is the same as Eq. (2), and Eq. (6) explicitly 
provides the systematic error for method 2. Again, Ti  is the 
true value of item i, S NX S1 1

0~ ( , )σ ,is the short-term sys-
tematic error of method 1, R NX Ri1 1

0~ ( , )σ  is the random 
error of method 1, and similarly for method 2 in Eq. (6). 
Note that model B  is not the same as model A unless 
S T2 1= −( )β , which is a relative error model for S2

As for model C, the data that were used to calibrate meth-
ods 1 and 2 prior to measuring the sampled items could 
be used. Recent numerical evaluations of four calibration 

options have led a recommendation to use reverse calibra-
tion [8-10], using n ( , )X Ti i1  pairs to fit T X Ri i i

= + +β β10 1 1 1,  
and n ( , )X Ti i2  pairs to fit T X Ri i i

= + +β β2 0 21 2 2, ,  for method 
two. The calibration options evaluated in [8] are to apply 
classical regression, fitting X T Ri i1 0 1 1= + +α α , and then in-
verting to solve ˆ ( ˆ ) / ˆT X i= −1 0 1α α  (and similarly for method 
two), or to apply reverse calibration, directly fitting 
T X Ri i i

= + +β β0 1 1 1 . Both options can adjust for errors in 
predictors or not, so there is a total of four calibration op-
tions. The reverse calibration option without adjusting for 
errors in predictors (but using simulation with errors in pre-
dictors to accurately evaluate the behaviour of the esti-
mate) has been found to have the same or smaller estima-
tion error, so it is the only option evaluated in Section 4. 
Figure 1 plots the observed bias in 1 (of 105) simulation 
with 3 standards, and as shown in [8], model C can be ex-
pressed as:

 X T S S T T Ri i i i1 11 12 1= + + − +, , ( )  (7),

 X T S S T T Ri i i i2 21 2 2 2= + + − +, , ( )  (8),

with both additive and multiplicative systematic errors. The 
additive systematic error arises from estimation error in the 
intercept. The multiplicative systematic error arises from 
estimation error in the slope, increasing from 0 at the mid-
dle of the calibration data to large positive or negative val-
ues near the ends of the calibration data. Some of the 
well-known results for least squares regression are rele-
vant for evaluating calibration data; however, reverse cali-
bration is not a straight-forward application of regression 
because of the errors in predictors, and [8-10] recommend 
simulation for accurate model fitting and uncertainty quan-
tification arising from calibration data.

Figure 1: Bias versus true value for method 1 and method 2 
in one calibration.
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4. Simulation Results for the Safeguards 
Example

Re c a l l  t ha t  PPP was  i n t roduce d  i n  [2 ]  fo r 

Σ =










0 1134 0 06

0 06 0 0506

. .

. .
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ˆ . . . . .µ = × − × =1 22 1 0 22 1 5 0 88  Estimation errors in the 
sample covariance matrix Σ̂ to estimate Σ can make it ap-
pear that PPP does not occur. For example, in 105 simula-
tions in R with n = 10, 100, and 1000 ( , )X X1 2  pairs, the rel-
ative frequency that Σ̂ leads to the wrong conclusion that 
PPP does not occur is 72%, 40%, and 0%, respectively. 
Estimation errors in the sample covariance matrix Σ̂ to es-
timate Σ  can also make it appear that PPP does occur 

when it does not. For example, with Σ =

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, 

a a1 20 13 0 87= =. , . , so PPP does not occur, but in 105 
simulations in R [15] with n = 10, 100, and 1000 ( , )X X1 2  
pairs, the relative frequency that Σ̂ leads to the wrong con-
clusion that PPP does occur is 32%, 14%, and 0%, 
respectively.

It was found using 106 simulations in R [14] that PPP can 
occur for models A, B, and C. It was also found that Eq. (3) 
is not sufficiently accurate for σ µ̂

2 (see results in Sections 
4.1-4.3). The values in the covariance matrices given below 
are repeatable to the number of digits shown across sets 
of  10 6 s imu lat ions.  In  a l l  the  resu l ts  be low, 
N T

T
= = = 100 100 50, ,σ .

4.1 Model A

The example from [1] was evaluated by simulation in R [15] 
using n n1 230 5= =, , σ σ β σS R R1 1 21 0 1 1 1 0 1= = = =, . , . , . . 

The estimated covariance matrix is Σ̂ =



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
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384 399

399 838
, which 

implies that the correlation between Method 1 and 2 is 
0.70, and that a a1 21 04 0 04= = −. , . , so by Theorem 1, PPP 
occurs. Figure 2 plots the root mean squared estimation 
error in µ̂  versus a1.

Figure 3 plots the observed and predicted σ µ̂ using Eq. (3) 
from [1] versus a1. Note that Eq. (3) from [1] is not an accu-
rate approximation. It is noted here that reference [1] did 
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smaller estimation error, so the reported results all used 
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.

4.2 Model B

The modified example from [1] was evaluated by simulation 
in R  [15] using n1=20, n2=5, σ σ σ σS R S R1 1 1 21 1 2 2= = = =, , , . 

The estimated covariance matrix is Σ̂ =










333 343

343 784
, which 

implies that the correlation between Method 1 and 2 is 
0.67, and that a a1 21 02 0 02= = −. , . . so by Theorem 1, PPP 
occurs.

4.3 Model C

The modified example from [1] was evaluated by simulation 
in R [15] using N = 100, n1=20, n2=10, T = 100, σT = 50, 
β β0 11 100= =, ,  σ σ σ σT R T R1 1 2 20 003 0 003 0 04 0 04= = = =. , . , . , . 

σ σ σ σT R T R1 1 2 20 003 0 003 0 04 0 04= = = =. , . , . , . . There were 3 calibration items, with true val-
ues of 100, 550, and 1000 grams. The estimated covari-

ance matrix is Σ̂ =










835 850

850 1357
 which implies that the cor-

relation between Method 1 and 2 is 0.80, and that 
a a1 21 03 0 03= = −. , . , so by Theorem 1, PPP occurs.

Models A, B, and C can all exhibit PPP and for the numer-
ical examples chosen, models A, B, and C  have 
a a1 21 04 0 04= = −. , . ,  a a1 21 02 0 02= = −. , . ,  a n d 
a a1 21 03 0 03= = −. , . , respectively.

Figure 2: The RMSE versus a1 for model A. The minimum RMSE 
occurs at a a1 21 03 0 03= = −. , . .
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Figure 3: Observed and predicted value for Model A (from Eq. (3) 
from reference [1]) of σ µ̂ versus a1.

5. Summary

Recent work on uncertainty quantification [8-10] for NDA 
has found that simulation is needed for high-quality uncer-
tainty quantification. This paper provides another example 
where simulation is needed for high-quality estimation of 
the 2-by-2 covariance matrix Σ of two assay methods. The 
example was a safeguards measurement example from [1] 
in which a sample of items was assayed using both a low-
er uncertainty (DA) method and a higher uncertainty (NDA) 
method was re-evaluated. First, it was shown that general-
ized least squares can be applied to optimally combine the 
resulting two estimates, µ̂1 and µ̂2 of the population mean. 
µ . Second, it was shown using simulation for any of three 
measurement error models, that there is large positive co-
variance between the two estimates, µ̂1 and µ̂2, and one 
estimate has much larger variance than the other. Third, it 
was shown that PPP can occur for all three models. Be-
cause PPP is a somewhat rare phenomenon, this finding is 
of interest. However, safeguards analysts need not be con-
cerned if PPP occurs in such an example; because it is an 
understandable behaviour of GLS [2-4,16] in examples 
with large positive covariance matrices. Analysts are ad-
vised to use simulation to ensure high-quality estimates of 
Σ so that analysts know when PPP does occur. Reference 
[16] considers alternatives to PPP when there is non-negli-
gible estimation error in Σ̂.
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