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Abstract

Currie’s paper [1] on estimating the minimum detectable 
activity (MDA) applied a Gaussian approximation to either 
Gaussian or Poisson data and remains the standard meth-
od to estimate radiological detection limits. This paper re-
visits the Currie method with attention to the false alarm 
probability (FAP) in Poisson and Gaussian data in non-de-
structive assay (NDA) by gamma (denoted asg ) detection. 
The Currie detection limit LD is an estimate of the smallest 
net signal count rate lN  that can be detected with high 
probability and low FAP in the presence of non-zero back-
ground count rate lB  that has been previously estimated. 
The MDA is the sample activity or mass corresponding to

lN , defined as MDA =
LD

n
, where in the case of g -based  

NDA, the calibration factor n  (a product of g -ray  yield, de-
tector and geometric efficiency, counting time, and other 
factors) has measurement error that introduces systematic 
error in the estimate of the MDA. Kirkpatrick et al. [2] 
showed how to account for systematic uncertainties in the 

estimate of MDA =
LD

n
 using a modified version of Currie

estimation [2,3]. The present paper combines the ap-
proach in [2] with a tolerance interval approach. It is shown 
that the FAP in signal detection can be significantly differ-
ent from the nominal FAP if the nominal FAP is not based 
on a tolerance interval, and if the nominal FAP is based on 
a tolerance interval, then the MDA will be larger than Cur-
rie’s estimated MDA.

1. Introduction

The Currie detection limit LD is an estimate of the smallest 
net signal count rate lN that can be reliably detected with 
low FAP in the presence of non-zero background count 
rate lB  [1]. The MDA is the sample activity (or mass through 

a conversion) corresponding tolN, defined as MDA =
LD

n
, 

where the calibration factor n  (a product of g -ray  yield, de-
tector and geometric efficiency, counting time, and other 
factors) has measurement error that can introduce system-
atic error in the estimate of the MDA. Kirkpatrick et al. [2] 
showed how to account for such systematic uncertainties 

in the estimate of MDA =
LD

n
using a modified version of the 

Currie estimation [2,3]. The MDA can be used prior to data 

collection to compare different instruments and measure-
ment scenarios, and can also be used as a quantitative 
measure on an item-specific basis after data collection. In 
g -ray  spectroscopy, the background is often estimated 
from the continuum beneath the peak(s) of interest, so the 
MDA is specific to the measurement conditions (including 
what other nuclides are present).

This paper revisits LD with attention to the FAP (denoted a ) 
in Poisson and Gaussian data, by using a tolerance inter-
val approach [4,5]. Section 2 provides background, moti-
vation, and example tolerance intervals. Section 3 provides 
a simulation approach and results for both Gaussian and 
Poisson data. Section 4 uses results from Section 3 to es-
timate the MDA while allowing for random and systematic 

errors in the calibration factor n  in MDA =
LD

n
. Section 5 is 

a discussion. Section 6 is a summary.

2. Background

Currie [1] provided approximate MDA calculations for the 
desired FAP based on the assumption that the measure-
ment data has a Gaussian distribution with mean m  and 
variance s 2, denoted X N~ , . m s 2( )  In g -ray  spectrosco-
py, the measurement data are g -ray  counts at certain en-
ergies, which are often well modeled with a Poisson dis-
tribution, which for a large mean count rate is well 
approximated by a Gaussian distribution. Because m  and 
s  must be estimated, the well-known frequentist ap-
proach to a confidence interval for m  from n measure-

ments x x xn1 2, ,...,  is x t s n t nn n± = ±− − − −1 1 1 1a a,( ) ,( ) ,m s  

where t n1 1− −a,( )  denotes the (1-a ) quantile of the t distribu-

tion with n-1 degrees of freedom, ni
i

n

=
=

∑
1

, and 

s x x ni
i

n
2 2 2

1

1= = − −
=

∑ˆ ( ) [1,4,5].

In nuclear safeguards (Sections 3 and 4), background 
measurements are often used to estimate an alarm thresh-
old that has a small nominal a , such as a  = 0.05. So, in-
stead of requiring a confidence interval for m, the need is to 
estimate a threshold (the 0.95 quantile of the distribution 
of X), denoted T0 95. , that corresponds to a = 0.05. The 
threshold T0 95.  is the upper limit of a one-sided interval of 
the distribution of X if doing one-sided testing for a positive 
mean shift. In contrast to a confidence interval, a tolerance 
interval is an interval that bounds a fraction of a probability 
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distribution with a specified confidence (frequentist) or 
probability (Bayesian approach) [4,5]. Both frequentist and 
Bayesian tolerance interval approaches will be presented 
in this paper. The frequentist tolerance interval estimators 
presented have the form , where k  is the 
coverage factor that depends on n. The goal in both the 
frequentist and Bayesian approaches is to achieve 

, where p is a user-specified probability 
(the frequentist confidence level), such as p = 0 99.  [4,5]. In 
the Bayesian approach, m and s  are random unknown 
parameters so  is comput-
ed with respect to m and s. In the frequentist approach,  
and  are random while m  and s  are fixed unknowns so 

T PX X Xn
( ) ( ). ,..., . .0 95 0 95 0 95 0 951 2

≥ = ≥  is computed with
respect to random samples of size n.

In any frequentist approach, probabilities such as a  are 
calculated with respect to the distribution of X for fixed m  
and s . A frequentist tolerance interval has an associated 
confidence, which is the long-run relative frequency (prob-
ability) that an interval such as ( ) will in-
clude a future observation X from the same distribution as 
the training data used to estimate  and . In any Bayes-
ian approach, probabilities are calculated with respect to 
the joint posterior distribution fposterior ( ),m s  for fixed X [5].

To illustrate the frequentist approach, assume that n = 10 
measurements are used to construct an upper limit that 
bounds at least p = 0.95 (a ≤ 0 05. ) of future data with prob-
ability p= 0.99. Fig. 1 plots a single realization of the n = 10 
measurements and compares the Currie limit to the toler-
ance interval limit. To achieve a user-specified a  for future 
measurements aimed to detect whether any signal is pre-

sent in a background measurement, Currie [1] used the de-

tection threshold T kB B= + −m a s1  where k1−a  is the

(1-a )  quanti le of the Gaussian distr ibution, and 

sB , and the term ˆ 2 n  is the estimated vari-

ance of the estimate of the unknown mean mB. Regarding 
notation, in this paper, the subscript B denotes background, 
and the subscript N denotes net, and both the B and N 
subscripts will sometimes be omitted, depending on the 
context, to avoid cluttering the notation. Currie regarded this 
value of  as an approximate value if the underlying data is 
non-Gaussian (such as Poisson; see Section 3). If one uses 
k t nn1 1− −=a d( )  instead of the (1-a ) quantile of the Gaussi-

an distribution in Currie’s calculationT kB B= + −m a s1 ,

with noncentrality parameter d = z np  where zp  is the 1-p

quantile of the standard Gaussian, then the calculation is 
exact if the underlying data has a Gaussian distribution [4].

Fig. 1: Illustration of the tolerance limit k1 3 7= .  compared to the Currie limit k2 1 7= .  for future data in the case of using 10 Gaussian

observations to estimate m  and s  and the corresponding Gaussian quantile, .
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Perhaps surprisingly, an exact expression for a toler-
ance interval is only available in the one-sided Gaussian 
case just described [4-7]. However, good approximate 
expressions for many other cases are available [5-7]. Al-
ternatively, and in the approach taken in this paper, tol-
erance intervals can be well estimated using simulation 
to approximate an alarm threshold that is designed to 
contain at least 1− a  percent of future observations with 
a specified coverage probability p. Currie did not con-
sider the probability pand note from Fig. 1, that for 
p = 0 99. , the decision limit is much larger than Currie’s 
limit, with k1 3 7= .  (tolerance) versus k2 1 7= . (Currie). As 
shown in Section 3, using the value k1 3 7= .  corre-
sponds to p = 0 99.  = P T T( ). .0 95 0 95≥ , while using k2 1 7= .  
gives p = 0 52. .

Fig. 2 plots P T T( ). .0 95 0 95≥  (Fig. 2a) and the true average 
FAP (Fig. 2b) for a range of sample sizes n if the data is 
Gaussian for both the tolerance method (using p = 0 99. ) 
and the Currie method. The tolerance value for k1 (which 
depends on n), P T T( ). .0 95 0 95≥ , and the true FAP are 

easily calculated using simulation in R [8] as shown in 
Section 3.

A Bayesian analysis specifies a prior probability for 
parameter(s) q , a likelihood (such as Gaussian or Pois-
son in this paper) P X q( | ), and then finds the posterior 
distribution of q , fposterior ( )q . Bayesian tolerance interval 
construction then f inds an estimate T 1−a  such that 
P X T( | )< = −−1 1a q a  with specified coverage probability 
p . In the Gaussian case with unknown m  and s , 
q m s= ( , ). In the Poisson case, q l l= ( , )G B  if both a 
gross count rate and background count rate are re-
quired, and q l= ( )  if the count rate at a single region of 
interest is required. For Gaussian and Poisson data, 
conjugate prior pdfs are available, which have the con-
venient property that the posterior pdf is in the same 
family as the prior, but with updated parameters. For ex-
ample, the conjugate prior for the Gaussian with un-
known m  and s  is the Gaussian-inverse-Gamma and 
the conjugate prior for the Poisson is the Gamma distri-
bution [5].

Fig. 2: The true value of P T T( ). .0 95 0 95≥  in (a) and true FAP in (b) if data is Gaussian. The tolerance interval method is conservative, so has 
a FAP that is smaller than 0.05 by construction. The Currie method has FAP much larger than 0.05 for small sample sizes.
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3. Simulation to estimate T 0 95.

The user seeks T 1−a  such that P X T( | )< = −−1 1a q a  with 
specified coverage probability p.

3.1  A simulation-based trial-and-error frequentist 
approach for Gaussian data

The simulation-based trial-and-error frequentist approach 
to estimate k is as follows.

1. Specify n, m , s .

2. For each of many (typically 105 or more) simulations, 
generate X N i ni ~ , , , , ...,  for      m s 2 1 2( ) =

3. Compute ˆ ˆ+ k  for a grid of trial values for k using 

m s= = = − −
= =

∑ ∑x x n x x ni
i

n

i
i

n

1

2

1

1, ( ) ( ) .

4. Select the trial value of k that includes at least 95% of the 
population (of future X values) with probabilityp = 0 99. ; 
that is, P T T( ) .. .0 95 0 95 0 99≥ = , where T k0 95. = +m s .

For example, with n = 10 and for any values of m  and s , the 
exact result is k  = 3.738, and the simulation-based result in 
R [8] is k  = 3.74, which is within the small simulation error in 
a large but finite number (105) or simulations. Similarly, simu-
lation can also estimate the probability that the Currie-based 
k  value bounds at least 95% of the probability density func-
tion (pdf) of X (so the FAP is 0.05 or less), and in this exam-
ple with n = 10, there is a probability of approximately 0.52 
that the Currie-based value of k has a FAP of 0.05 or less.

One nuclear safeguards application for tolerance intervals for 
Gaussian data is inspector (i) measurements of operator (o) 
declarations of n items sampled for verification. In each of n 
values of the operator-inspector dif ference statistic 
d o i oj j j j= −( ) , if | |d kj > d  (in two-sided testing ), then the 
j-th item selected for verification leads to an alarm, where 
d d dT R S= +2 2, (with dT  the total RSD, dS the between-period 
short-term systematic error RSD, and dR the within-period 
reproducibility) and k = 3 is a common choice that corre-
sponds to a small a  of approximately 0.001. The null hypoth-
esis is m = 0, and dT  can be estimated by applying analysis 
of variance (ANOVA) [9-12]. If one assumes d dT T=  then 
choosing k = 1 65.  corresponds to a  = 0.05 (Gaussian ap-
proximation); however, as an example, if n = 10 paired meas-
urements in each of 3 prior inspection periods are available, 
and d dS R= = 0 03.  [9 12], then choosing k= 1.65 leads to 
an actual FAP of 0.05 or less with probability 0.38. If one de-
sires a high probability p = 0 99.  that the actual FAP is as 
small as the nominal FAP, then simulation [9,12] indicates that 
instead of k = 1.65, one must choose, for example, k  = 2.58 
for 5 groups of 10 measurements, k = 2.94 for 3 groups of 
10 measurements and k = 4.35 for 2 groups of 5 measure-
ments. Unlike the single-component Gaussian case, these 
values of k depend on the values of the ratio d dS R , which is 
unknown, so approximate frequentist or Bayesian methods 

are needed. Note that any Bayesian method can be regard-
ed as approximate because one almost never knows the ex-
act prior probability distribution. The accuracy of these ap-
proximate methods can be assessed using simulation and/
or by analysis of historical data.

3.2 Poisson data

Fig. 3 shows that the true FAP of Currie’s method can be 
quite different from the nominal FAP, so tolerance interval 
construction should be considered. In Fig. 3, the simulated 
data is n = 1 observation of X ~ Poisson(l ), with l  = 1, 10, 
or 100. A count time of t = 1 second is used to estimate the 
background and to test whether a subsequent measure-
ment corresponds to the same background rate l  (See 
Section 5.1). For comparison, P X Tttest test=( )>l  of the 
corresponding Gaussian distribution is shown, where 

T k n t0 95 1 1. ( )= + +l l , which is Currie’s [1] approach to 
estimate T by using the Gaussian approximation for both 
Gaussian and Poisson data, and using the factor 1 1+ n  to 
quantify the impact of uncertainty in the estimated mean on 
the estimated background standard deviation. Note (Fig. 3b) 
that for large values of l  (and/or large count times) such as 
l ≥ 100, then the Gaussian approximation (with the factor 

1 1+ n  but without the notion of a tolerance interval) to the 
Poisson is adequate. The reason for this good accuracy is 
that the variance of the Poisson distribution is equal to its 
mean l, so the Poisson standard deviation can be estimat-
ed with less uncertainty than that of the Gaussian.

Recall from Example 3.1 that estimating the standard devia-
tion of the Gaussian requires n > 1, and that the notion of tol-
erance intervals is needed; the estimated threshold T is much 
too small if uncertainties in ,m s  are not accounted for prop-
erly. Without using tolerance intervals, references [2, 13-14] 
extended Currie’s treatment of Poisson data [1] by using the 
Poisson distribution rather than an approximating Gaussian. 
Particularly when count rates and/or count times are small, it 
is prudent to use the Poisson distribution rather than the ap-
proximating Gaussian. As an example (also used in Sec-
tion 4), let n = 5, m = 10, and x x x1 2 5, ,...,  are 10,12,10,10,8, so 

x = 10 and Currie’s T kB B0 95 1 12 5. .= + − =m a s , which is 

rounded up to 13 (and in 93% of 105 simulations, test meas-

urements exceed the 13 limit, so the FAP can be much larger 
than 0.05). In the same example, a one-sided tolerance inter-
val using the R code in Section 3.3 below leads to T= 21.5, 
rounded up to 22 for 99% confidence that the FAP is 0.05 or 
smaller. Also for the same example, a Bayesian tolerance in-
terval approach is illustrated in Section 3.3 using a prior prob-
ability density fprior prior prior( ) ( , . )l a b= = =Gamma 1 075  (the 
conjugate prior for the Poisson, and this particular prior has 

mean a bprior prior = =1 0 075 13 3. .  and standard deviation 

a b 2 1 0 075 13 3= =. . ) has fposterior prior( ) (l a= +Gamma

x ni
i

n

prior
=

∑ + = + +
1

1 50 0 075 5, ) ( , . )b Gamma ,  which has 



18

ESARDA BULLETIN, No. 54, June 2017

Fig. 4: The prior and posterior distribution for l  for n = 5, m = 10, and x = 10 .

Fig. 3: The probability P X Tttest test=( )>l  versus k  for l = 1 , 10, and 100. The normal approximation is also plotted. Currie’s factor 

1 1 2+ =n  is ignored in (a), included in (b).
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mean 10.05 and standard deviation 1.41; see Fig. 4. Note that 
the Gamma parameters, conventionally denoted as aprior  and 
bpriorare not related to the FAP a  or the nondetection proba-
bility b.

3.3  Simulation for Poisson data for frequentist and 
Bayesian approaches

3.3.1 Frequentist approach

1. Specify l and n.

2. For each of many (105 or more) simulations, generate 
X i ni ~ ( ), , ,..., Poisson  l = 12 .

3. Compute l l+ k n  for a grid of trial values for k using 
l = x .

4. Select the trial value of k that includes at least 95% of 
the population (of future X values) with probability 
γ = 0.99; that is,  P T T( ). .0 95 0 95≥ = 0.99, where 

.T k n0 95 = +l l .

With n = 5, l  =10, the Currie approximation is .T 95 =12.5 
and the exact value using simulation (to within negligible 
simulation error) is .T 95  = 21.5. The probability that the FAP 
is 0.05 or less is only 0.07 with the Currie value and is, by 
design, 0.99 with the simulation approach. Unlike with 
Gaussian data, for Poisson data, the value of k  depends 
on l , so l  must be replaced with l .

3.3.2 Bayesian approach

1. Specify n and the parameters of the Gamma prior 
a bprior prior and . In this example aprior  =1 and bprior  = 
0.075 (a very wide prior with mean and standard devi-
ation of 13.3.

2. For each of many (typically 105 or more) simulations, gen-

erate l a b~ ( , )Gamma prior prior  and Xi ~ ( ), Poisson l  
 i n= 12, ,..., .

3. Compute a apost i
i

n

priorx= +
=

∑
1

 and b bpost priorn= + .

4. Choose the quanti le of the poster ior lpost ~  

Gamma post post( , )a b s u c h  t h a t  P T T( ). .0 95 0 95≥ =
p = 0 99. . This is the count value that is greater than 
95% of the distribution of X for 99% of the l  values 
generated in the simulations.

The Bayesian result is .T0 95 = 23.4 for the same Poisson 
example. Recall that Currie’s value of .T0 95 is 13, the fre-
quentist .T0 95 given above is 21.5, and all values of .T0 95 are 
approximations. The Bayesian estimate .T0 95 is approxi-
mate because there is always mismatch between the true 
and assumed prior. The frequentist estimate .T0 95 is ap-
proximate because it depends on the true value of l so in 
practice, one uses l = l . Currie’s .T0 95 is approximate for 
the reasons given. Recall that the accuracy of these 

approximate methods can be assessed using simulation 
and/or by analysis of historical data.

3.4 Example with two Poisson counts in each assay

Detection of g counts often requires measurement of 
both the nearby-in-energy “background” counts and the 
peak region “gross” counts (Section 5.1). The gross mean 
count rate is l l lG B N= +  [2,13,14]. The Bayesian ap-
proach is effective in this context for two main reasons: a 
conjugate prior (Gamma) can be specified for lG and lB , 

so the measured G and B  counts each lead to

f x nposterior prior i
i

n

prior( ) ( , )l a b= + +
=

∑Gamma
1

, and it is sim-

ple to enforce lN ≥ 0. Although the choice of prior pa-
rameters a  and b  for both lG  and lB  is subjective, the 
user often can bound the range for both lG  and lB  from 
prior data, so aprior  and bprior  can each be within some 
modest range. If the Bayesian approach is applied re-
peatedly, its long-run behavior can be evaluated to 
check, for example, whether the nominal FAP is close to 
the actual FAP.

To illustrate, choose aprior = 1 and b
prior

= 0.075 for lG  and 
lB  as in the previous Bayesian example for Poisson data. 
Generate G~ Poisson(lG ) and B ~ Poisson(lB ). For each 
of many (105 or more) simulations, generate lG  from its 
posterior Gamma( , . )1 0 075 1+ +G  and generate lB  from 
its posterior Gamma( , . )1 0 075 1+ +B  and for those simula-
tions for which l lG B≥  (because lN ≥ 0), compute G  – B
. Determine the threshold T for G– B  such that with prob-
ability at least p = 0 99. , P G B T( ) .− ≥ ≤ 0 05. The result 
for G  = 30 and B = 10 is T = 34 (Currie) and T = 45 
(Bayesian tolerance, using the Skellam distribution, which 
is the distribution of the difference in two Poisson ran-
dom variables). Then LD is an estimate of the smallest net 
signal count rate lN that can be detected with high prob-
ability and low FAP in the presence of nonzero back-
ground count rate lB  that has been previously estimated. 
Ignoring errors in the calibration factor n  (assuming n  = 
nTrue and for simplicity here also assuming nTrue = 1), the 
Currie-based MDA is 39 and the tolerance interval-based 
MDA is 77. Allowing for 5% RSD in the total error as in the 
p r e v i o u s  e x a m p l e  a n d  a s s u m i n g  t h a t 
n nMeas True S R= + +( )1  has a Gaussian distribution (any 
distribution is simple to accommodate here), then the 
Currie–based MDA, which corresponds to the net count 
rate assuming zero external background (see Sec-
tion 5.1), increases from 39 to 45 and the tolerance inter-
val–based MDA increases from 77 to 87.

4. Implications for the MDA

Recall he Poisson example in Section 3.3 for which Cur-
rie’s T kB B0 95 1. = + −m a s =12.5 (which is rounded up to 

13), and the one-sided tolerance limit is .T0 95 = 22 for 99% 
confidence that the FAP is 0.05 or smaller. Therefore, the 
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estimated MDA based on the tolerance interval limit will be 
larger than the estimated MDA based on the Currie limit. 
Specifically, if the mean count rate shifts from m = 10 to 
m = 19 5.  any future observation X ~ ( . )Poisson l = 19 5  
satisfies P X( ) .≥ ≥13 0 95 for the Currie mean shift and 
X ~ ( . )Poisson l = 34 4  satisfies P X( ) .≥ ≥22 0 95 for the 
tolerance interval mean shift. The mean shift values 
l = 19 5.  and l = 34 4.  are easily computed by numerical 
search. The MDA is then calculated by converting the 
mean shift to an activity, which requires calibration.

Recall that the MDA is defined as MDA =
LD

n
, where in this 

example LD = 19 5.  (Currie) or LD = 34 4.  (tolerance) and the 
calibration factor n  (a product of g -ray  yield, detector and 
geometric efficiency, counting time, and other factors) has 
measurement error that can introduce systematic error in 
the estimate of the MDA. References [2,13,14] account for 
systematic uncertainties in the estimate of the MDA using 
a modified version of the Currie estimator [2,3].

To allow for random and/or systematic errors in n , 
n nMeas True S R= + +( )1 , implies that the mean shift when 
the signal is present has uncertainty. To illustrate, assume 
that it is desired to have at least 99% confidence that the 
mean shift is above some limit. Assuming Gaussian cali-
bration errors, then, for example, assuming 5% relative 
standard deviation (which is assumed here to include both 
random and systematic components) in converting the 

mean shift to activity using MDA =
LD

n
 increases the esti-

mated mean shift that can be detected with high probabil-
ity from 19.5 to 22.1 (Currie approximation) and from 34.4 
to 38. (tolerance interval approximation).

5. Discussion

This section describes three additional topics related to 
MDA calculations.

5.1 Definition of the background

In some g -based NDA applications, the challenge to de-
fine and measure the relevant background is important. 
For example, in attribute measurements of fresh fuel as-
semblies, one task is to assess whether a given assembly 
is a dummy (not containing 235U). In this case, the back-
ground is defined as the response of the detector to g  
emissions from neighboring assemblies if the assembly 
being measured were a dummy. That is, measurement be-
havior needs to be characterized if g  emissions could be 
measured from only the neighboring assemblies at the lo-
cation of the assembly being measured. The measure-
ment seeks to provide evidence that a signature from the 
item was detected (thereby verifying presence of 235U) and 
that the measured signature originated from the item, not 
from radiation outside the item.

The minimum detectable quantity is not usually defined for 
attribute testing; however, it is sometimes desired (beyond 
the scope of this example) to estimate the probability that 
the test alarms for large mean shifts, such as a mean shift 
associated with 50% or more nuclear material missing.

Gamma-ray detectors detect distinct g -rays energies. So-
dium Iodide (NaI) and Cadmium-Zinc-Telluride (CZT) are 
common detector types. The presence of 235U is verified in 
fresh fuel by estimating the area in the peak region of inter-
est (ROI) associated with the 185.7 keV g -ray. If the esti-
mated peak area exceeds 3 times its estimated standard 
deviation, then based on the acceptance criteria estab-
lished by the IAEA corresponding to a 99.7% confidence 
level (assuming no estimation error in the estimated stand-
ard deviation, so tolerance interval concepts are not being 
used; see the final paragraph in section 5.1) in the pres-
ence of the peak, the peak is considered to be present in 
the spectrum and the presence of 235U is verified within the 
fuel. Because g -rays  at such energies interact with materi-
als primarily through both the photoelectric effect (in which 
the g -ray transfers all its energy to the detector medium) 
and Compton scattering (in which the g -ray scatters off 
an electron in the medium or surrounding mediums caus-
ing a partial transfer of its energy to the detector medium), 
each measured peak in a g -ray spectrum lies on top of a 
background caused by higher energy g -rays that under-
went Compton scattering within the detector. An example 
of this can be seen in Fig. 5 in which a γ-ray spectrum of a 
fresh fuel assembly as measured by a CZT detector is 
shown for γ-ray energies ranging from 20 keV to 305 keV. 
Because a fresh fuel assembly contains both 235U and 
238U, and because the γ-rays that are associated with the 
decay of 238U exist at energies between 700 and 1001 keV, 
the 186 keV γ-ray photo peak from 235U will always be pre-
sent on top of a Compton background associated with the 
scattering of g -rays from 238U within the CZT detector.

In fresh fuel verification scenarios where shielding and col-
limation can be used to detect g -rays only from the select-
ed assembly, the peak area is estimated as the difference 
between the total counts in the ROI that includes the peak 
and the counts associated with the Compton background 
in that region (recall Example 3.3). To assist in determining 
whether the attribute test condition has been satisfied, 
most software programs automatically notify the inspector 
when the net area of the peak ROI above the Compton 
background is larger than 3 times its estimated standard 
deviation.

In cases where attribute measurements are performed near 
other items containing the same type of nuclear material, a 
background measurement is needed to estimate the peak’s 
count rate as detected from the surrounding environment. 
The background-only measurement corresponding to the 
item-plus-background measurement in Fig. 5 had a similar 
spectrum shape as that in Fig. 5, but the peak ROI counts 
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were approximately 60% lower. For this background-only 
measurement, the same CZT detector that was used for 
item-plus-background was put in an empty slot of a storage 
rack containing fresh fuel assemblies. The background 
spectrum was measured during the same training exercise 
and for the same count time as the spectrum in Fig. 5, 
which was from an attribute test measurement of a fresh 
fuel assembly within that same storage rack. Assuming zero 
room background, applying the attribute test to the back-
ground spectrum would yield a positive (and incorrect) verifi-
cation because the estimated peak area was approximately 
13 times its estimated standard deviation. Therefore, to en-
sure proper verification of items using the attribute test, 
careful consideration must be given regarding how the 
room background is measured in order to reject the possi-
bility that the measured spectrum was the result of room 
background and not from the item to be verified.

When the background spectrum shows evidence that the 
peak of interest is present from measuring the surrounding 
environment, the verification of an item using the attribute 
test is executed using

(Measured rate) – (background rate) > 3
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where ŝB is the estimated standard deviation in the esti-
mated peak area in the background measurement, s M  is 
the estimated standard deviation in the area of the peak in 
the measured spectrum from the item, and TB and TM  are 
the count times corresponding to the background and item 
measurement, respectively. Both the measured and back-
ground rates are corrected for the background caused by 
Compton scattering by estimating the count rate of the net 

peak, which involves a difference of two quantities as in Ex-
ample 3.3. In cases where the attribute test software is un-
able to account for room background in automatically cal-
culating whether the attribute test has been passed, the 
inspector performs the attribute test calculation for each 
item. The attribute test aims to answer the question ‘Does 
the item contain the material as declared?’, and an inspec-
tor’s time is quite limited, so inspectors sometimes apply 
more stringent statistical tests to help confirm the attribute 
test result. One example of such a stringent test is

Measured rate
T

Background rate
T

M

M

B

B
· · .− > +3 3
s s

Inspectors typically perform the background measurement 
before performing the verification measurements, and the 
quantity on the right side of the stringent inequality is a sin-
gle calculated value, which makes the evaluation simple to 
do while performing verification measurements. Measure-
ments that do not pass the stringent test can be tested 
against the more formal method.

Recall that the Gaussian approximation to the Poisson is 
adequate for tolerance interval estimation if the Poisson 
mean l ≥ 100 (Fig. 3), so the factor of 3 used above is justi-
fied because for the data in Fig. 5, the quantiles of the 
Gaussian provide an adequate approximation to the true 
FAP, assuming l l=  (but one should be aware of the need 

for the factor 1 1 2 1 41+ = =n .  as in Fig 3a versus 
Fig 3b). A more complicated method than a sum of Poisson 
counts below and above the peak ROI is often used to esti-
mate the background under the blue line in Fig. 5; so s B  
and s M  can involve more than the Poisson distribution (be-
yond this paper’s scope).

Fig. 5: γ-ray spectrum of a fresh fuel assembly from a CZT detector. The red lines indicate the ROI used to estimate 186 keV peak area 
while the blue line is an estimate of the Compton background beneath the 186 keV peak based on a linear interpolation of the back-
ground at γ-ray energies that are just above and below the ROI.
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5.2 Tolerance interval versus prediction interval

A prediction interval is another approach to the MDA that 
leads to larger MDA values than the Currie-based MDAs 
and to smaller MDAs than the tolerance interval-based 
MDAs. The prediction interval approach averages over the 
parameter(s) q  so there is no probability statement regard-
ing confidence in coverage [5].

5.3  Impact of analyzing predicted counts rather than 
estimated activity

Zykov [15] describes a pass-fail criterion for verification 
measurements (operator declarations compared to inspec-
tor measurements, as in Section 3.1) regarding the minimum 
detectable defect size (the minimum amount of missing ra-
dioactive material) if analysis of the inspector measurements 
is based on measurements that are predicted using mode-
ling and the operator declarations. Such an approach would 
avoid explicit inversion of measurements to activity or nucle-
ar material mass, and simulations to be presented else-
where suggest that the minimum detectable defect size 
would be smaller. The minimum detectable defect size 
would be based on a tolerance interval approach, because 
that is more conservative than the Currie approach, as this 
paper has shown. This methodology could lead to more ef-
ficient verification sampling plans. Regarding testing for pat-
terns, recall that the overall test for a pattern is based on the 

average difference statistic, D
n
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o
j j
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=
−

=
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 [14], which 

could be defined on the basis of measured masses or on 
the basis of predicted and observed measurements. How-
ever, whenever an estimate of the D statistic (at the stratum, 
material balance component, or material balance area level) 
is needed, e.g. for the detection of diversion into D through 
material balance evaluation, it would be necessary for the 
inspector to estimate item mass, so explicit inversion of in-
spector measurements to item mass would be required.

6. Summary

This paper revisited Currie’s MDA with attention to the FAP 
in Poisson and Gaussian data in NDA by g -ray  detection. It 
was shown that the actual FAP can be significantly larger 
than the nominal FAP if the nominal FAP is not calculated 
based on a tolerance interval; and, if the nominal FAP is cal-
culated based on a tolerance interval, then the MDA is in-
creased compared to the Currie approximation. Implications 
for safeguards have not yet been evaluated. A simple way to 
accommodate random and/or systematic errors in convert-
ing from a mean shift to an activity shift was illustrated.
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