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Abstract:

Nuclear archaeology is a  f ie ld dedicated to the 
reconstruction and quantification of the past production of 
fissile materials. As part of related research efforts, we 
examined in this study the possibilities and limitations of 
exploiting measurements of high-level waste to deduce 
parameters related to the operational history of reactors 
such as burnup. For the first stage of this project, we used 
high-fidelity reactor simulations to estimate spent-fuel 
compositions, and developed a surrogate model which 
can be used as a computationally less-expensive method 
to map combinations of input parameters to fuel 
compositions. This model gives us a better understanding 
of the challenges involved in solving the inverse problem of 
deducing the reactor history from waste measurements. 
A promising method to solve this inverse problem may be 
Bayesian inference, where prior existing information (e.g. 
a declaration by a state) can be taken into account, and 
waste measurements would be used to update this 
knowledge. This way, measurements may confirm the 
existing information, make it more accurate or identify 
inconsistencies which may indicate intentional or 
unintentional non-conformity of the declaration. For a proof 
of concept of the methodology, we examined in this study 
three simple scenarios in order to determine a few reactor 
parameters, given a hypothetical declaration by a state 
and a  simulated measurement of the waste isotopic 
composition.

Keywords: nuclear archaeology; nuclear forensics; disar-
mament; verification; Bayesian inference

1. Introduction

While there is extensive experience from IAEA Safeguards 
in verifying both the correctness and completeness of nu-
clear material declarations issued by non-weapon states 
members of the Non-Proliferation Treaty, there is a lack of 
methods to verify nuclear material ‘baseline’ declarations, 
i.e. the first verified declaration a state makes upon enter-
ing an agreement. A solid understanding of fissile-material 
holdings is needed to achieve a meaningful degree of pre-
dictability and irreversibility of future arms-control initia-
tives. Speculations about unaccounted fissile-material 
stockpiles, possibly equivalent to hundreds of nuclear 

weapons, could make progress in this area very 
difficult [1].

Most large-scale fissile-material production programmes 
were driven by a sense of urgency and typically shrouded 
in secrecy. It is generally believed that accounting for these 
military operations was poor. The fissile material produc-
tion uncertainty is very large, and even states themselves 
have had difficulty reconciling production records with 
physical inventories. In the United States, for example, es-
timated plutonium acquisitions exceeded the actual inven-
tory by 2.4 tons, but it is not clear whether this material 
ever existed [2]. For HEU, the US inventory difference is 
about 3 tons [3].

In addition to direct data on produced fissile materials, 
such records would contain operational information on the 
nuclear facilities. For the nuclear reactors, besides reactor 
and fuel designs, this would include data such as reactor 
power, fuel burnup and cooling time (which refers to the 
time elapsed since a specific production campaign oc-
curred). In this paper we refer to these as operational 
parameters.

In order to obtain more accurate plutonium estimates, 
a first approach in reconstructing the production history is 
to perform reactor simulations using newer, more accurate 
codes than those used decades ago. One such recent 
code is SERPENT 2 [4], which takes the operational pa-
rameters as input and calculates the isotopic composition 
of the discharged fuel — including plutonium, but also fis-
sion products and actinides — as output.

Additionally, measurements in shut-down facilities can be 
taken to obtain complementary data. For example, experi-
mental research has been done on taking moderator or 
structural material samples in reactors to independently 
deduce/reconstruct the amount of plutonium produced in 
these shut-down facilities [5,6]. This approach is known as 
nuclear archaeology.

However, what is still lacking is a systematic and integrated 
approach that ties together all available information — not 
only from measurements, but also from available records 
about the past fissile material production. Such an ap-
proach could be used to identify inconsistencies (for ex-
ample between records and actual measurements), 
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reconstruct missing data from records using measure-
ments, and quantify and reduce the uncertainties on the 
amount of produced fissile materials.

Here, we propose to use Bayesian inference for this pur-
pose. To demonstrate the approach, we present a first and 
preliminary proof-of-concept study using a very simple 
scenario. This method is based on measuring high-level 
waste from reprocessing using mass spectrometry, as has 
been proposed for nuclear archaeology [7]. The high-level 
reprocessing waste contains nearly all fission products 
and actinides after dissolving the spent fuel. Accordingly, it 
contains a rich isotopic signature of past fuel cycle activi-
ties. The radioactive waste could therefore be used to esti-
mate the operational parameters of the fuel cycle, such as 
fuel burnup or cooling times.

This approach would directly benefit states that apply it by 
providing a better understanding of their nuclear pro-
gramme’s history. Additionally, it could be used as a verifi-
cation tool. For instance, in the case of a state declaring 
that a reactor was used for civilian purposes with high 
burnup, this method could prove whether a low burnup 
campaign for possible military purposes was run. Similarly, 
a reactor may have run for more time than declared, which 
could be detected by examining the cooling times.

While it is not clear whether the proposed approach could 
be applied to complex programmes, this study shows that 
it may be fit for use in small programmes of a complexity 
similar to the North Korean case, in which essentially only 
the Yongbyon reactor is the origin of the country’s plutoni-
um inventories.

Section 2 provides an overview of the theoretical back-
ground and methodology used in this study. In Section 3, 
the implementation of the approach is described. In Sec-
tion 4, test scenarios and the practical application of the 
Bayesian framework are presented. Section 5 contains the 
results of the evaluated test scenarios and a discussion 
thereon, followed by conclusions and research outlook in 
Section 6.

2. Theoretical background

As described previously, the isotopic composition of high-
level waste (



yobs ), which would be measured during verifi-
cation activities, can be obtained from the output of reac-
tor simulations. Our task is to solve an inverse problem. 
Indeed, we seek with our approach the input to those sim-
ulations — which we call forward simulations — the opera-
tional parameters (



x ). Our forward simulations can then be 
thought of as a model that can compute 

 

y f x� � �. Reactor 
simulations such as SERPENT 2 couple a Monte Carlo 
neutron transport routine with a fuel depletion routine [8]. 
Therefore, f x

� � cannot be described in a simple function 
that could perhaps be inverted analytically. In the following, 

we explain how it can, however, be inverted using a nu-
merical method.

2.1 Bayesian inference

Bayesian inference solves an inverse problem, by treating 
it statistically. It is particularly suited for inverting intractable 
and complex models, as is the case for reactor operations. 
Using Bayes’ theorem, the posterior probability can be 
calculated, which is the probability distribution p x yobs

 

|� � 
that specific reactor parameter combinations 



x  (operation-
al parameters) might have produced the measured isotop-
ic composition of the high-level waste 



yobs  (output). It is ex-
pressed as follows:

 p x y p y x p xobs obs

    

| |� � � � � � � �  (1)

where p y xobs

 

|� � is the likelihood, which is the distribution 
of probabilities that the measured isotopic composition 
would have been obtained by a specific combination of op-
erational parameters. It is obtained by running a large num-
ber of forward-simulations to explore the space of possible 
operational parameters (parameter space) where the (simu-
lated) output of each forward-simulation 



y  is compared to 
the (real) measured isotopic composition 



yobs . It is as-
sumed that 



y  is normally distributed, hence

p y x exp
y f x

obs i

N obs
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 
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�
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where the index i  represents an isotope under considera-
tion and σ i  is the corresponding uncertainty, which must 
be provided. It must include all sources of uncertainties: 
measurement uncertainties, model uncertainties, etc. The 
equation above requires that the isotopes chosen be inde-
pendent of each other.

The particular benefit of the Bayesian approach is that pri-
or knowledge can be included, which is given by manually 
formulating p x

� �. Such prior knowledge could be, for in-
stance, information from records of the production history 
and to which an uncertainty value can be assigned. Ac-
cording to Bayes’ theorem, this prior information is then 
combined with the measurement to produce the posterior. 
Another advantage of this approach is that, due to its 
probabilistic nature, it allows for the propagation of uncer-
tainties, so that uncertainties on the reactor parameter es-
timates can be obtained.

2.2 Markov Chain Monte Carlo and Gaussian 
process regression

The posterior is numerically constructed by exploring the 
reactor parameter space by evaluating different reactor 
parameter combinations 



x . To choose these combinations 
we use Markov Chain Monte Carlo (MCMC). A Markov 
chain is a sequence of events constructed in such a way 
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that any given event 


x  is only affected by the immediately 
previous event  [9]. MCMC is a class of algorithms that 
combine traditional Monte Carlo methods together with 
Markov chains in order to sample the posterior from a giv-
en probability distribution. In the present work, we have 
chosen to use the MCMC NUTS algorithm, which is 
a state-of-the-art algorithm in the context of Bayesian 
inference [10].

Using a high-fidelity reactor simulation, the exploration of 
the posterior can be computationally prohibitive, since de-
pending on the number of parameters to be reconstruct-
ed, several thousands of simulations would be usually re-
quired for MCMC. Therefore, instead of directly running 
reactor simulations, we developed a surrogate model that 
accurately represents the high-fidelity model but can be 
evaluated much faster. Specifically, the model is based on 
Gaussian Process Regression (GPR) to approximate the 
results of the simulations.

GPR belongs to a class of interpolation methods with im-
portant applications on response surface approximation 
for complicated functions, in particular those of the ‘black-
box’ type for which no analytical mathematical expression 
exists, as in our case. Unlike other regression methods us-
ing a particular function type or polynomial decomposition, 
the GPR performs a regression using a distribution over 
functions, which share assumptions on basic properties 
such as smoothness and differentiability [11]. These as-
sumptions are codified through the use of covariance in-
formation of a set of parameter vectors (



x ) with which the 
interpolation model is created. Such information is used 
under the hypothesis that parameter vectors that are close 
to each other correspond to isotopic vectors (



y ), which 

would be also be close to each other. Using this, GPR al-
lows prediction of the value of the underlying function 
 

y f x� � � at non-simulated values 


x  [12].

Our surrogate model was created by running SERPENT 2 
simulations using many different 



x . The choices of 


x  have 
been obtained using quasi-Monte Carlo sampling. We 
used the Halton sequence, through which input parameter 
vectors can be generated from a deterministic sequence 
with low discrepancy [13].

3. Model and surrogate model implementation

As a proof-of-concept study, we implemented an infinite 
lattice model of the Savannah River Site K Reactor’s inner 
core using data from [14-18]. This reactor was designed for 
the production of weapons-grade plutonium, as well as 
tritium. It consists of a high-power heavy-water reactor op-
erated almost continuously for a period of approximately 
five decades, along with four other similar reactors at the 
Savannah River Site with a  maximum power of 2400 
MWth. During the operation of this reactor, several fuel ele-
ment designs were tested. The design implemented in this 
work is that of the Mark 15 uniform lattice fuel element, 
which uses an enrichment of 1.1 %. This design was cho-
sen due to data availability and because it was the most 
efficient design ever tested [14].

Figure 1 shows the SRS-K Reactor implementation in 
SERPENT 2. To our knowledge, information on the spent-
fuel concentrations, which could have served to validate 
the model, is not publicly available. Therefore, in order to 
assess the general quality of our model, we successfully 
verified that the evolution of the infinite multiplication factor 

 

Figure 1: Mark 15, 2D — infinite lattice implementation (left). Detail of Mark 15 fuel element (right).
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as a function of irradiation time was plausible, and that the 
energy-integrated reactor neutron flux φ  and the fuel load 
calculated based on the SERPENT output agreed with the 
literature [14].

The operational parameters 


x  considered for the surrogate 
model are fuel burnup (B ), cooling time (Ct ), and power. In 
addition, enrichment values of around 1.1 % are selected 
within a range consistent with criticality considerations. To 
create the surrogate model, 1000 SERPENT 2 simulations 
were run. The ranges of the three operational parameters 
are shown in Table 1. These parameters obey operational 
limitations due to the reactor design and historical con-
straints. For each output isotope, we built a GPR model 
using the Scikit-learn library in Python [19].

The quality of the GPR surrogate models was studied 
through a chi-square two sample test, a standard test in 
statistical analysis [20]. For this, 6000 additional SERPENT 
2 simulations were run and directly compared to the pre-
dictions of the GPR models at their respective test points. 
These results are shown in Table 2 with the corresponding 

symbols � 2 �GPR/SERPENT and p − GPR/SERPENT, de-
noting the test statistic and the corresponding p-value. To 
gain deeper insight, a Gaussian fit of the errors between 
the model predictions and the simulations has been made. 
If the GPR surrogate model can reproduce SERPENT 2 
simulations with good quality, then the errors should be 
normally distributed with zero mean. We analysed this fit 

again with the above test, calculating the � 2 �Errors and 
its corresponding p −Errors values, also shown in Table 2. 
This table shows the calculated statistics for a selected 
group of isotopes. It can be observed that for these iso-
topes the GPR models describe the data well.

Power (MW) Burnup (MWd/kg) Cooling time (a)
600 – 2400 0 – 3 0 – 50

Table 1: Range of input parameters used in the SRS K reactor 
model. These values also correspond to the limiting values for the 
reliable reconstruction of these parameters.

Our study aims at examining whether fuel burnup and cool-
ing time can be reconstructed using 137Cs,154Eu,95Mo,142Nd 
and 90Sr, assuming that the power and the enrichment are 
known. These isotopes were chosen because of their good 
sensitivity to the two parameters. This was assessed by 
a variance-based sensitivity analysis calculating Sobol indi-
ces [21]. Scatterplots illustrating reactor-simulation results 
for these isotopes are presented in Figure 2.

In an actual application, one would study isotope ratios. If 
the proof-of-concept can be demonstrated with individual 
isotopic concentrations, we hypothesise that it should also 
be feasible with isotopic ratios, as the underlying mathe-
matical principles would remain the same.

4. Proof of principle — scenarios

Our basic study focuses on a very limited plutonium pro-
duction scenario, obtained from a single reactor and for 
which discharging and reprocessing of fuel occur only 
once or twice. The high-level waste is then stored in a sin-
gle tank. Similar conditions are believed to represent the 
situation in North Korea, when IAEA inspectors conducted 
on-site-inspections on reprocessing waste samples after 
the state joined the Non-Proliferation Treaty [22].

To solve the inverse problem, first, 


yobs  must be calculated 
by choosing specific values of 



x  that are used as input to 
SERPENT 2. The software package PyMC3 [23] is then 
used in order to calculate the posterior(s). The algorithm 
has no knowledge of the originally chosen values 



x , but 
reconstructs them based on 



yobs . For each scenario we 
have used 2 × 105 posterior evaluations. We consider 
a successful reconstruction only if the maximum probabili-
ty of the posterior distribution is close to the chosen 
values.

To summarise, Figure 3 illustrates in a schematic way the 
steps of the methodology that we propose in order to veri-
fy and reconstruct reactor operational histories under the 
above-described scenarios.

137Cs 90Sr 154Eu 142Nd 95Mo
c 2 – GPR/SERPENT 0.81 0.67 0.30 0.28 0.16

p – GPR/SERPENT 0.93 0.95 0.98 0.99 0.99
Mean – Errors 6x10-6 6x10-5 4x10-6 2x10-6 6x10-5

Std - Errors 3x10-4 6x10-4 3x10-5 2x10-5 6x10-4

c 2 – Errors 5.92 7.31 11.14 7.47 10.01

p – Errors 0.43 0.50 0.52 0.88 0.44

Table 2: Above: Results of a chi-square test, comparing the isotopic concentrations calculated by SERPENT and GPR. Below: Gaussian 
fit parameters and goodness-of-fit analysis for the GPR model errors relative to SERPENT 2 simulations. Mean and standard deviation are 
given in absolute units. Results of a chi-square test of normality are shown. Typically, one would assume both chi-square tests to be 
successful if p > 0.05, which is clearly the case. Therefore, the GPR models describe the data with a high likelihood.
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Three scenarios were studied.

1. A single fuel batch has been reprocessed, the burnup 
and cooling time are unknown but the power is known 
(1018 MW). Uniform probability distributions of the two 
parameters are used as a prior, i.e. giving equal proba-
bility for the parameters within a range defined by mini-
mum and maximum values U min max,�� �� (see Table 3). 
A vector yobs  for the isotopes 137Cs, 154Eu and 95Mo is 
calculated. We assume that all isotopic concentrations 
carry an uncertainty � i� � of 10 %. This is an upper 
bound estimate that we use, as a detailed uncertainty 
assessment has not been conducted for this feasibility 
study.

2. The same scenario as above, but assuming more pre-
cise prior information, for example from authenticated 
records that had been produced during the past reac-
tor operations, resulting in narrower ranges of the uni-
form prior (see Table 3).

3. Two batches (


yi
obs) with different burnup values are as-

sumed. The waste produced is stored in the same 
tank, resulting in the isotopic composition 



ymix . . In this 
case, uniform priors are also considered for both burn-
ups, covering the span of possible model values. The 
mass ratio α  of the two batches must then also be 
reconstructed:

  

y y ymix
obs obs� � �� �� �1 21

Figure 2: Scatterplots of selected isotopes as a function of burnup. The values serve as the basis for calculating the Sobol sensitivity 
indices, which are indicated in each plot. These plots are one-dimensional projections of simulation results using SERPENT 2 for different 
parameter combinations of power, burnup and enrichment.

Figure 3: Workflow of the reactor history reconstruction methodology. The respective software packages are indicated in parentheses.
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this scenario, the power is also 1018 MW and the cooling 
time is 29.6 years. A vector 



ymix  for the isotopes 137Cs, 
154Eu, 95Mo, 142Nd and 90Sr is calculated, and the assumed 
uncertainty � i� � of the isotopic concentrations is now 5 %.

Scenario Burnup 
(MWd/Kg)

Cooling time 
(Years)

Mixing ratio 
(a)

Scenario 1 U 0 3,�� �� U 0 50,�� �� -

Scenario 2 U 1 65 1 95. , .�� �� U 27 31,�� �� -

Scenario 3 U 0 3,�� �� - U 0 1,�� ��

Table 3: Comparison of priors for all scenarios.

5. Results and discussion

5.1 Scenario 1: Reconstruction of burnup and 
cooling time with uninformative prior

The results for scenario 1 are shown in Table 4 and Figure 4, 
in which we observe a well-defined, non-pathologically 
shaped joint posterior distribution. By examining Table 4, it 
can be assessed that the burnup and cooling time parame-
ters are reconstructed with reported relative uncertainties of 
5 % and 6 %, respectively. Quantifying the uncertainties of 
the estimates is an important advantage of using the Bayesi-
an approach. The estimated mean values lie within 0.1 % of 
the true values used to compute the measurements vector.

Parameter True 
value

Posterior 
mean

Posterior 
std

Relative 
uncertainty

Burnup 
(MWd/Kg)

1.793 1.790 0.091 5 %

Cooling 
time 

(years)
29.6 29.7 1.8 6 %

Table 4: Scenario 1, summary of the parameters and results. True 
values refer to the values used to obtain the vector of simulated 
measurements yobs .

Figure 4: Normalised posterior distribution for scenario  1. The 
correct solution is indicated in green.

5.2 Scenario 2: Reconstruction of burnup and 
cooling time with a constrained prior

The results for scenario 2 are shown in Table 5 and Fig-
ure 5, which demonstrate that having/using a constrained 
prior allows the spread of the posterior distribution to be 
reduced. On the one hand, this occurs by limiting the 
space of possible solution values and cutting values incon-
sistent with the uniform prior. On the other hand, and more 
importantly, the probability distributions fall more steeply 
around the maximum likelihood. The uncertainties of the 
reconstructed burnup and cooling time are 2.8 % and 
3.3 %, respectively. This demonstrates the important role 
of the priors in the Bayesian approach, with constrained 
prior(s) reducing the uncertainties of the operational 
parameters.

Parameter True 
value

Posterior 
mean

Posterior 
std

Relative 
uncertainty

Burnup 
(MWd/Kg)

1.793 1.799 0.050 2.8 %

Cooling 
time 

(years)
29.6 29.8 1.0 3.3 %

Table 5: Scenario 2, summary of the parameters and results. True 
values refer to the values used to obtain the vector of simulated 
measurements yobs .

Figure 5: Normalised posterior distribution for scenario  2. The 
correct solution is indicated in green.

5.3 Scenario 3: Reconstruction of burnup values of 
a mix of two batches

The results for scenario 3 are shown in Table 6 and Fig-
ure 6. As observed in the two previous scenarios, the re-
constructed posterior is again well defined, with both burn-
up values successfully estimated. Although the burnup 
values are close, they can be clearly distinguished in their 
reconstructed posteriors. The estimated uncertainty for 
Burnup 1 is 18.6 %. For Burnup 2 and the Mixing Ratio, 
the estimated uncertainties are 7.6 % and 26.9 %, respec-
tively. In this scenario the uncertainties are much larger 
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than in the previous one. We believe that this could be 
caused by the limited choice of isotopes under analysis. 
The absolute standard deviations of the posterior for both 
burnups are similar. This results in larger relative uncertain-
ties for Burnup 1 than Burnup 2. Also, please note that an 
uncertainty of 5 % was assumed for the isotopic concen-
tration, as opposed to the 10 % used for the previous sce-
narios. With larger uncertainties here, the uncertainties of 
the posterior increase further. More research is to be done 
in order to study the sources of the posterior uncertainties 
and the selection of a more appropriate set of isotopes for 
the reconstruction of mixtures.

Parameter True 
value

Posterior 
mean

Posterior 
std

Relative 
uncertainty

Burnup 1 
(MWd/Kg)

0.800 0.874 0.163 18.6 %

Burnup 2 
(MWd/Kg)

1.825 1.776 0.135 7.6 %

Mixing 
ratio

0.410 0.367 0.099 26.9 %

Table 6: Scenario 2, summary of the parameters and results. True 
values refer to the values used to obtain the vector of simulated 
measurements yobs .

Figure 6: Normalised posterior distributions for scenario 3. The 
correct solution is indicated in green.

6. Conclusions and outlook

With this study, we have successfully demonstrated the 
possibility of reconstructing reactor operational parameters 
using isotopic samples of reprocessing waste in combina-
tion with reactor simulations and operational knowledge 
within a Bayesian inference framework. This enables the si-
multaneous reconstruction of both burnup and cooling 
time, along with the estimation of the uncertainty of these 

parameters given the available knowledge. These uncer-
tainties were obtained assuming that the uncertainties of 
the measured isotopic concentrations were around 5-10 %. 
A detailed uncertainty quantification study is required for 
a better understanding of the uncertainties of isotopic con-
centrations. We assume 5-10 % uncertainty is an upper 
bound.

Further research will include full-core reactor simulations 
and a systematic study of isotopic ratios to be used in the 
analysis. Due to various processes in waste tanks such as 
precipitation, which can affect different elements in differ-
ent ways, one has to use ratios of isotopes that behave 
similarly in the waste tank for this analysis, so that such 
processes do not influence the analysis. Nevertheless, this 
study is valid as the mathematical principles (i.e. the feasi-
bility of a surrogate model, and Bayesian inference) and ex-
pected uncertainties are the same or similar in both cases.

While we have focused on simple scenarios, any real nu-
clear programme would likely be more complex than the 
three cases considered in this study. In particular, the 
number of reprocessed batches, each with varying opera-
tional parameters, would be larger. However, in the case of 
small nuclear programmes, this larger list of parameters 
might still be reconstructed, as a much larger set of iso-
topes than those presented here could be considered in 
the analysis. However, this would clearly not work for large 
programmes such as those conducted in Russia or the 
United States. In these cases, strategies must be found to 
reduce the number of parameters to be reconstructed. 
This is called model reduction, a classic topic in computa-
tional science [24], which in our case could possibly in-
volve grouping a number of batches together and describ-
ing them by average parameters, among other methods, 
to bring about conclusions about the history of a mixture 
of reprocessing waste batches.

In addition, in the case of complex nuclear programmes, 
this methodology could help in the reconstruction of infor-
mation, especially when a portion of the existing records is 
missing or has become corrupted. Further research is 
needed, however, to explore this possibility.

Finally, future work in this field should focus on the exami-
nation of the method behaviour when information is incon-
sistent, for instance when a civilian programme with high 
burnup has been declared, but low burnup campaigns 
were run, or when the declared history is incomplete, for 
instance when a programme is older than declared.
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