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Abstract:

In the last years, Earth observation (EO) satellites have 
generated big amounts of geospatial data. Many providers 
offer their satellite data at low cost or even for free. For 
example, initiatives such as the Copernicus program, the 
European Union's Earth observation program, have 
revolutionized the market. The growing archives of satellite 
imagery open up a wide range of satellite EO applications, 
also in the field of nuclear verification where satellite 
imagery represents a key source of information for the 
implementation and verification of nuclear non-proliferation 
treaties [1]. The data collected, processed, analyzed, and 
managed for monitoring purposes is not only increasing in 
volume, but also becoming more and more heterogeneous, 
unstructured, and complex. However, Big Data is also 
accompanied with several issues related to capturing the 
data, sharing, transferring, updating, processing, and 
analyzing. To meet these demands, novel technologies 
have been developed. Apache Airflow for example has 
become a popular tool for defining, scheduling, visualizing, 
and monitoring Big Data related workflows [2]. For storing 
and accessing multidimensional raster data, such as 
satellite imagery, an array database management system, 
called Rasdaman, has become well established [3]. To 
analyze these large amounts of data effectively and 
efficiently, Google has developed a free-to-use cloud 
computing platform, known as Google Earth Engine (GEE) 
[4]. In this research an automated procedure for collecting, 
storing, processing, and analyzing satellite images based 
on the tools mentioned above was developed. Hereby, the 
strengths of Airflow in terms of the creation of dynamic 
workflows with high granularity and the log entries of 
execution became evident. Furthermore, Rasdaman 
provides indispensable advantages such as the open 
standards-based data-cube analytics possibilities. The 
usability and benefits of GEE with respect to big EO data 
management and analysis were evaluated through an 
analysis of two different machine learning algorithms, 
namely Random Forest (RF) and Classif ication and 
Regression Trees (CART). Regarding the target land over 
classes, the classification results of manual generation 
were compared with two by GEE provided land cover maps 
from the years 2017 and 2019. The overall accuracy of the 
RF and CART classifiers for the Sentinel-2 images was in 
the range of 87% to 98%, and 68% to 83%, respectively.

Keywords: Satellite Imagery; Big Data; Data Science; Air-
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1. Introduction

Geospatial data, satellite imagery in particular, represents a 
key source of information for the implementation and verifi-
cation of nuclear non-proliferation. In 1998, the IAEA start-
ed to investigate the potential use of commercial satellite 
imagery to support the safeguards implementation and 
nowadays it “[…] has become a very important source of 
information [...] especially with respect to sites to which the 
IAEA does not have access." [1]. Many applications of satel-
lite imagery in the field of nuclear verification have been 
identified over time. With commercial satellite imagery avail-
able to the public, new opportunities are emerging to mon-
itor nuclear activities at both known and undeclared nucle-
ar facilities in a more proactive manner to verify compliance 
with non-proliferation agreements. As numerous studies 
have shown, satellite imagery provides analysts with clear 
insights into nuclear facilities and nuclear activities world-
wide, for example, to confirm the status of an inoperable 
facility or declared production without having to visit the 
sites in person [1,5,6,7]. Moreover, use cases such as the 
recognition and monitoring of small-scale features for in-
stance the construction of buildings, plant expansions or 
the preparation of underground facilities are also consid-
ered. The amount of available and heterogeneous satellite 
EO data is steadily increasing , as no longer only a few op-
erators and government sources offer the data as primary 
source, but private companies are also investing in EO sat-
ellites, driven by technological advances that allow for high-
er resolution sensors and a higher return rate capacity. 
Many provider offer their satellite data at low cost or even 
for free. For example, initiatives such as the Copernicus 
program, the European Union's Earth observation program, 
have revolutionized the market. The demand for their im-
mense amount of data is huge, as the Copernicus Sentinel 
Data Access Report of 2020 shows [8]. In 2020, a total 
data volume of 7.65 PiB was published, which is signifi-
cantly more compared to the European Space Agency’s 
(ESA's) entire collection of EO data from the pre-Coperni-
cus era which amounts to 5.6 PB [8]. The average daily 
download volume of the Sentinel Data Access System was 
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405 TiB, resulting in a total of 82.8 PiB of products down-
loaded just in 2020 [8].

Due to the sheer volume and the velocity at which the 
amount of data is increasing, remote sensing data is re-
ferred to as Big Data. However, aspects such as diversity, 
complexity and trustworthiness also make this type of data 
Big Data. But what exactly does Big Data mean and to 
what extent does it apply to satellite imagery? The term Big 
Data refers to large data sets, whether structured, unstruc-
tured, or complex, that are difficult or even impossible to 
store, process and analyze using conventional methods. To 
define the term more precisely, several multi-V models were 
introduced in the last years starting with the 3-V model. In 
this paper, the 5-V model, characterized by the following 
propertied, is taken into consideration: Volume, velocity, va-
riety, veracity and value. The term volume simply refers to 
the quantity of an existing and fast-moving amount of data. 
In this context, there is no upper boundary at which data is 
considered to be "big". The speed at which the data accu-
mulates is summarized under the second V, namely veloci-
ty. Depending on the data source, a different data type is 
present, for example, data can be of an unstructured, semi-
structured or structured nature. This characteristic is repre-
sented by the term variety. Veracity describes the data 
quality and its accuracy. Only data with known origin and 
quality, such as correctness and completeness, are gener-
ally considered to be reliable and can be trusted. In addi-
tion, data analysis can only provide a meaningful result if 
high quality data is available as input data. The last charac-
teristic, referred to as value, refers to the usefulness of data. 
This raises the question of the benefit of high quality data if 
there is no use case in terms of a concrete example. So, 
one has to weigh whether to store all data or only useful 
data, the so-called smart data.

The data quantity and quality keeps moving forward with 
the aim of offering high and medium spatial resolution im-
ages on a daily basis. However, Big data is also accompa-
nied with several issues related to capturing the data, stor-
ing, processing and analyzing it. In turn, this will create new 
challenges for the analyst to use the datasets appropriately 
and in a timely manner. No longer can visual interpretations 

of single satellite image scenes be expected to address the 
analysis requirements for such large repositories of satellite 
imagery datasets. To meet these demands, novel technolo-
gies have been developed. Apache Airflow for example en-
ables the optimization of data processing and workflow 
management processes [2]. For storing and accessing 
multidimensional raster data, such as satellite imagery, an 
array database management system, called Rasdaman, 
has become well-established [3]. To analyze large amounts 
of data effectively and efficiently, Google has developed a 
free-to-use cloud computing platform called Google Earth 
Engine (GEE). The platform provides access to publicly 
available remote sensing imagery and machine learning al-
gorithms [4]. In this research, these tools have been utilized 
to develop a semi-automated procedure for collecting, 
storing, processing and analyzing satellite images. The pro-
ject plan is shown in Figure 1.

Within the scope of this work, Sentinel-2 data is obtained 
from the Copernicus program. Due to the diversity of pos-
sible data, a comprehensive preparation of the data in pro-
cess usable formats is necessary to be able to use appro-
priate analysis algorithms. The data source is integrated 
into the Apache Airflow workflow management system ca-
pable of downloading, validating, preprocessing and stor-
ing the data into a Rasdaman database. Finally, the effi-
ciency of the Google Earth Engine to effectively execute Big 
Data workflows using Google’s provided machine learning 
techniques is explored. The potential of the developed 
framework is tested using case studies concerning nuclear 
fuel cycle related sites. Hereby the objective is to classify 
land cover use, as these features provide essential informa-
tion for recognizing and monitoring for example changes of 
the operational status, constructions of new buildings and 
roads, plant expansions, etc.

2. Tool Fundamentals

2.1 Airflow

Apache Airflow is an open-source workflow management 
platform written in Python that enables the creation and 
management of data pipelines, as well as their automatic 

Figure 1: Project overview.
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Airflow manages and controls workflows via schedulers, 
whereas both sequential and parallel schedulers are sup-
ported. Workflows are executed according to a predefined 
schedule or trigger events. Once the schedule is created, 
according to which the tasks of the defined rules can be 
processed, the scheduler assigns them to the workers, 
which are responsible for the actual processing of the indi-
vidual tasks according to their respective Python descrip-
tion. For documentation purposes, all task information is 
stored in the meta database. Log files can be used for de-
bugging, error analysis or documentation.

2.2 Copernicus Data Hub

Copernicus, formerly known as GMES (Global Monitoring 
for Environment and Security), is a European Union pro-
gram aimed at establishing a European capacity for global 
environment and security monitoring [10]. The Program is 
funded, coordinated, and managed by the European Com-
mission in cooperation with partners such as ESA (Europe-
an Space Agency) and EUMETSAT (European Organisation 
for the Exploitation of Meteorological Satellites). The pro-
gram provides data from its own fleet of satellites, called 
Sentinel, in-situ data and data from national and commer-
cial satellites [11]. The Sentinel satellites consist of six mis-
sions: Sentinel -1 (High Resolution Radar), -2 (Optical for 
Vegetation), -3 (Optical/Thermal for Oceans), -5P (An Eye 
for Air) and -6 (Sea Level Elevation) are stand-alone satel-
lites, while Sentinel-4 and -5 are dedicated measurement 
instruments installed on EUMETSAT. There are currently 
eight Sentinels in space, namely Sentinel-1A & -1B (2014, 
2016), Sentinel-2A & -2B (2015,2017), Sentinel-3A & -B 
(2016, 2018), Sentinel-5P (2017), Sentinel-6 (2021). The 
Sentinel data and Copernicus services are free of charge 
and are provided through ESA's Copernicus Open Access 
Hub, previously known as Sentinels Scientific Data Hub. 

execution [1]. The key terminology used in Airflow is shown 
in Figure 2.

The core concept of Airflow is represented by Directed 
Acyclic Graphs (DAGs), which collect tasks together. A 
DAG forms an abstract structure consisting of nodes and 
edges. The nodes represent the individual work tasks and 
the edges the connections between them, having a direc-
tion. According to [9] a direct graph is defined as 

, where  is a finite set of 
nodes and E a finite set of directed edges. It holds that 

 This graph is called 
acyclic if there does not exist

 . 
 An example of a DAG is given in Figure 3.

Figure 3: Simple example of a DAG with the set of 
events  and

 representing the set of 
directed edges.

The management of the whole system is performed by a 
graphical user interface (webserver) and a scheduler. The 
webserver enables the creation of workflows and their 
management. The detailed status of each workflow can be 
displayed, thus making a live monitoring possible. Apache 

Figure 2: Terminology used in Airflow. The key concept are direct acyclic graphs (DAGs) managed by a webserver and a scheduler.
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support for raster data of arbitrary size and dimension over 
arbitrary base types, so-called multidimensional discrete 
data (MDD) [3]. Before the system architecture is described, 
the logical data model used by Rasdaman is explained 
whereby the declaration of [14] is used.

2.3.1 Logical data model

Multidimensional array data, also known as multidimen-
sional discrete data (MDD) is located in a discrete space 

 Figure 5 illustrates a three-dimensional MDD in a dis-
crete space 

A multidimensional object a is the mapping of a value of 
the base type to each vector of its domain, i.e., the multidi-
mensional interval it takes:

 where  describes the 
cell and  the corresponding cell value. The domain is 
spanned by an interval D of dimensionality d, where each 
dimension i  has a lower bound li and an upper bound ji  :

A single cell value  can be assigned a base type T, 
which may be of atomic or composite data types

 

A cell can represent a single value such as a gray value or a 
composite value, for example the red, green, and blue 
components of a color image. In addition to the basic data 
type T, an MDD has a data type M, which is described by D 
and T, M=<D,T>. A set of MDD of the same type M are 
called collection, defined by 
If operations are now applied, a distinction is made be-
tween those on MDD and those on collections. Geometric 

One has the possibility to download the data through a 
graphical interface or via two different application program-
ming interfaces (APIs), OData and Open Search (Solr). In 
this work, OData, a data access protocol built on the Hy-
perText Transfer Protocol (HTTP) and the Representational 
State Transfer (REST), was used because it can be easily 
integrated in Python using Client for URLs (cURL) or Wget. 
The data resources to be queried are uniquely identifiable 
via so-called Uniform Resource Identifiers (URIs) and can 
be requested via HTTP messages. As shown in Figure 4, a 
URI is composed of up to three components: (1) Service 
Root URI, (2) Resource path and (3) Query options that 
control the amount and order of the data.

Figure 4: Example of an OData URI. Source [12].

Since the queries used in this work are too complex and 
thus vulnerable to cURL and Wget errors, a generic bash 
script was implemented. This is based on the script dhus-
get.sh provided by Copernicus, which is a simple demo 
script illustrating how to use OData and OpenSearch APIs 
to query and download products from any Data Hub Ser-
vice [13].

2.3 Rasdaman

Originally, databases were developed to store, manage, 
and query alphanumeric data efficiently. However, data 
storage requirements have changed over the years. For ex-
ample, when looking at satellite imagery, it is necessary to 
be able to store multi-dimensional data. Array database 
management systems (array DBMSs) provide database 
services specifically for raster data and aim to provide a 
flexible and scalable management of this kind of data. In 
the context of this work, the array DBMS Rasdaman is re-
viewed, which aimed to form a comprehensive DBMS 

Figure 5: Constituents of a three-dimensional MDD. Source [15].
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builds a connection to the Rasdaman manager, which then 
establishes communication between a server and the 
application.

2.4 Google Earth Engine

In 2010, Google Inc. launched the development of a plat-
form called Google Earth Engine (GEE), offering cloud 
computations for EO products, initially focusing on forest 
monitoring using satellite imagery, but later expanding to a 
variety of applications related to Earth Observation [4]. 
These include case studies such as Map of Life, Global 
Surface Water, or Collect Earth [17]. There exist a series of 
applications in the field of Earth surface analysis [18] but 
very few suitable for our purposes [19]. The Google Earth 
Engine is free for research, education, and nonprofit use. 
Since the platform is a browser-based IDE (Integrated De-
velopment Environment), no separate software needs to be 
downloaded and maintained. To use GEE, a JavaScript-
based code editor is provided. Furthermore, data can be 
requested and analyzed using the Earth Engine (EE) Py-
thon API. To process the data Google infrastructure is pro-
vided consisting of a large pool of servers, co-located with 
the data that allows for fast data processing. In addition to 
the cloud computational capabilities, GEE offers an ex-
haustive catalog of remote sensing datasets including mul-
tispectral, radar, aerial, climate, land cover and vector data 
including data from satellite missions such as Landsat, 
Sentinel, MODIS as well as high-resolution imagery data 
sets [20]. The data is updated and expanded daily. When 
working with data from the GEE data catalog, three dataset 
types have to be distinguished: features, images and col-
lections. A feature (ee.Feature) is a geometric object con-
taining a list of properties. Images (ee.Image) are like fea-
tures but may include several bands. A combination of 
features or images is called collection (ee.ImageCollection). 
Machine Learning is supported via EE API methods and 
export and import functions for TensorFlowRecord files. 
The EE API provides methods such as ee.Classifier, 
ee.Clusterer or ee.Reducer. After performing the analysis, it 
is then possible to export a resulting ee.Image as a Geo-
TIFF to Google Drive or the local machine.

2.4.1 Google Colaboratory

Google Colaboratory is a cloud based hosted Jupyter 
Notebook service developed by Google specifically for ma-
chine learning applications. It allows users to develop, exe-
cute and share python code within Google Drive. It pro-
vides limited and up to a certain point free access to central 
processing units (CPU), graphical processing units (GPU), 
and tensor processing units (TPU). The EE Python API can 
be easily deployed in a Google Colaboratory notebook.

operations, induced operations, aggregate operations, and 
cell operations can be applied to multidimensional objects. 
In case of collections, relational operations such as appli-
cation, selection, cross product, among others, can be 
applied.

Big Data cubes can be created in Rasdaman via an OGC 
(Open Geospatial Consortium) Web Coverage Service - 
Transaction Extension (WCS-T) standard interface that al-
lows users and machines to insert, update, and delete data 
via simple web requests. A Python tool wcst_import is pro-
vided for this purpose. This tool is based on two concepts: 
(1) Recipes and (2) Ingredients. The recipe defines how 
data files are combined into a coverage. All information 
needed to create a data cube are specified in an ingredient 
file. This is a JavaScript Object Notation (JSON) file based 
on a recipe which translates the files and information spec-
ified in the ingredient file into the data cubes. If wcst_import 
is run again with a different set of files to be imported, the 
data cube will be updated at the correct positions.

2.3.2 Rasdaman architecture

The Rasdaman storage concept relies on a separate data 
storage. The raster data is stored in the file system and the 
metadata in a separate database. The client-server system 
can be summarized as a four-layer architecture as shown in 
Figure 6.

Figure 6: Rasdaman architecture. Source [16].

The foundation is formed by a conventional relational 
DBMS, which allows efficient storage of large volumes of 
data. The second layer is the Rasdaman server (rasserver), 
which provides various functions such as an interface to 
the relational database, metadata management and query 
processing. Furthermore, the server interacts with a Ras-
daman manager (rasmgr). This manager handles tasks 
such as security functions, authentication, or multi-user op-
eration by allocating requests to different Rasdaman serv-
ers. The fourth layer is the client. An application initially 
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In addition, the maximum cloud cover percentage that the 
image may have can be specified as well as it’s geometric 
resolution. This satellite provides a set of 13 spectral bands 
spanning from the visible (4 bands) and near infrared (6 
bands) to the shortwave infrared (3 bands) with a resolution 
of 10m, 20m, 60m depending on the wavelength. As test 
examples, we defined six different areas from which we 
only request Sentinel-2 bands having a geometric resolu-
tion of 10m or 20m and a cloud cover percentage less than 
ten percent. For each satellite provider, one DAG is created. 
The resulting structure can be seen in Figure 8.

The DAG consist of as many tasks as specified AOIs. Since 
Airflow allows the execution of parallel tasks, the graph 
adopts a tree structure. However, since Copernicus Hub 
can only handle two server requests at a time, the node 
CopernicusHub_start has only two child nodes. In the user 
interface (UI), the blue nodes represent task groups, which 
are a UI grouping concept and useful for creating repeating 
patterns. In each task group, the same sequence of tasks 
is executed accordingly to the different areas. The tasks 
are shown in Figure 9.

At the beginning, it is checked whether the corresponding 
data entry already exists in the database. If so, the execu-
tion of the task group is terminated. Otherwise, it is verified 
whether the data is available on the platform. For this pur-
pose, the modified dhusget.sh script is executed. If no data 
is available, no further tasks of the group will be executed. 
If the data is available, the task checkDownload passes the 
output of the executed script to the next task by using a 
cross-communications message (xcom). The script re-
sponse may look like id('2b17b57d-f f f4-4645-b539-
91f305c27c69') which represents an individual entity given 
by the UUID (Universally Unique Identifier) '2b17b57d-fff4-
4645-b539-91f305c27c69'. The next step is to determine 
whether the data is available for download or not. The avail-
ability of online products on the Data Hub can be identified 
by means of an OData query. If the data is online, it is 
downloaded directly. Otherwise, the download request au-
tomatically triggers the request for restoring the data from 

3. Case Study

3.1 Data Acquisition using Apache Airflow

The starting point of the developed framework is the work-
flow management implementation using Apache Airflow. To 
ensure flexibility and scalability, it has been implemented 
dynamically. Dynamic DAGs are usually better for dynami-
cally loading configuration options or changing operator 
options. In this case, the DAG is built dynamically based on 
two configuration files. The first one contains an overview 
of areas of interest (AOIs), defined by a name, the corre-
sponding polygon, and the satellite from which the data 
should be requested. The corresponding satellite configu-
ration is stored in another file, where its name, provider, 
and product type define each satellite. The Open Access 
Hub offers data starting from Level-1C. As a product type, 
Level-2A was chosen for this project because only atmos-
pheric corrected and orthorectified data are only available 
for Level-2A (see Fig. 7).

(a) Level-1C  

(b) Level-2A

Figure 7: Two different processing stages of Sentinel-2 data. 
Source [21].

Figure 8: Dynamically created DAG based on the two configuration files.
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3.2 Analysis using Google Earth Engine

To analyze this data, artificial intelligence (AI), in particular 
machine learning (ML) is applied, aiming at building and im-
proving a generalizing system based on relevant data that 
automatically identifies patterns of data not previously intro-
duced. There exist different types of machine learning algo-
rithms such as supervised, unsupervised, semi-supervised, 
and reinforcement learning. A number of studies have al-
ready been conducted on the application of supervised 
and unsupervised methods with respect to our use case 
[22]. In this paper, we provide an overview of two machine 
learning algorithms, namely Random Forest (RF) and Clas-
sification and Regression Trees (CART) provided by GEE. 
The decision tree algorithm CART developed by [23] pro-
vides decision trees for classification, as well as for regres-
sion. The key to this algorithm is to find an optimal binary 
separation. For this purpose, a univariate binary decision 
tree is built by the algorithm. The Gini index is used as an 
impurity measure and minimal cost-complexity pruning is 

the archive. Restored data is then kept online for at least 
three days. In case of a download, the file is then checked 
for completeness. For this, the MD5 (Message-Digest Al-
gorithm 5) checksum provided by the Data Hub is com-
pared with the MD5 value of the download. Sentinel-2 data 
is provided in the form of data packages (tiles) with a size of 
100x100 km2. Therefore, it may happen that several zip 
files are downloaded for one query which consequently 
have to be merged. The result is one image per geometric 
resolution cropped to the AOI. The last step is the insertion 
of the images into the Rasdaman database using the tool 
wcst_import. The corresponding recipe is dynamically filled 
with all file related information and is shown in Listing 1.

This recipe contains all the necessary information, such as 
the size of the image data, the associated coverage ID and 
the resolution. The input section contains information about 
the source files to be considered. The structural information 
such as the data cube type, the timestamp and metadata 
are part of the recipe section.

Figure 9: The actual tasks to be performed per area organized into Task Groups.

Listing 1: Sentinel-2 L2A recipe.
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used after the tree is built. The GEE library provides the 
technique classifier.smileCart. Random Forest [24] is a well-
known supervised machine learning method, which is 
based on decision trees and is used for classification and 
regression tasks. In Random Forests, many decision trees 
are created randomly based on so-called bootstrap data-
sets. Each tree makes individual decisions on its own. 
Classification is done by repeatedly applying a learning pro-
cedure to bootstrap samples of the training data and then 
aggregating the individual results. Since the individual deci-
sion trees can be built and trained quickly and in parallel, 
the overall algorithm also trains fast. In this study GEE’s 
technique classifier.smileRandomForest was used. Their 
performance is compared using accuracy assessment. 
The methodology used for training the classifier is shown in 
Fig. 10.

As previously mentioned, Sentinel-2 imagery with a cloud 
cover of less than ten percent is collected for six different 
AOIs. The median was used to compose the Sentinel-2 im-
ages for the entire years of 2017, 2019 and 2021. The 
bands B2-B8A as well as the normalized difference water 
index (NDWI), the normalized difference vegetation index 
(NDVI) and the bare soil index (BSI), calculated as follows

with near infrared (NIR), and short-wave infrared (SWIR), 
were used as input features.

Since the selected machine learning methods are super-
vised algorithms and the Sentinel-2 data do not contain 

labels, training data must be collected. Two different meth-
ods are compared for this purpose. On the one hand, Fea-
tureCollections for two AOIs are created manually using the 
GEE drawing tool and on the other target labels extracted 
from two different tagged land cover datasets [25, 26] pro-
vided by GEE were used for all six AOIs. An overview of 
available labeled land cover datasets can be found in [27]. 

For the manually extracted features, 72 feature polygons 
were selected distributed throughout the first study area 
and 89 for the second, covering six different classes, seven 
respectively. The features and the corresponding study ar-
eas are shown in Figure 11.

 
(a) FeatureCollection AOI1

(b) FeatureCollection AOI2

Figure 11: Manually created FeatureCollections consisting of 72 
and 89 features

Figure 10: Methodology for classification on the GEE platform using the machine learning algorithms RF and CART.
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Water was incorrectly declared as vegetation. Furthermore, 
road sections were classified as buildings. Also in the 2019 
case, there were more misclassifications of CART com-
pared to RF. Again, vegetation was misclassified as parking 
lot. Here, the wasteland has been identified as roads and 
parking lots. In both cases, Random Forest performed well 
compared to the second algorithm. Almost all buildings 
and vegetation are correctly classified. But also, here some 
road sections were misclassified. Figure 14 shows the clas-
sification maps of all six AOIs where the target classes 
were assigned to the predefined land cover datasets.

Since pasture/hay areas had very few pixels and thus in-
sufficient for efficient training, this class was misclassified 
as a developed class. Furthermore, several issues were en-
countered with the classification of woody wetlands and 
shrub/shrub classes, which were classified as forest in the 
first case and developed area in the second case.

Comparing the classification results with the underlying 
land cover map, which is shown in Figure 12, the RF algo-
rithm again provides significantly better results than CART. 
The effectiveness of the different classifiers was evaluated 
based on accuracy. The most used metrics for evaluating 

For the first area, a land cover of GEE was used, which 
spans eight different epochs and contains 20 different land 
cover classes. The 2019 release was used in this study. A 
single mosaic dataset from 2017 containing 13 classes was 
used as the second land cover. The land cover maps ac-
cording to their AOI are shown in Figure 12.

Training and validation datasets were generated using a 
stratified random sampling approach which were then used 
to build, train, and classify a RF and a CART classifier. In this 
study, a total of 170 trees combined with a minimum leaf 
population of 3 and a fraction of input to bag per tree of 0.9 
yielded good results for RF. In terms of the CART algorithm, 
the best cross validation factor was determined to be 5. 

3.3 Results

Figure 13 shows the classification results obtained by  
both classi f iers based on the manual ly created 
FeatureCollections.

Figure 13 (b) shows that for the year 2017 the classification 
by CART resulted in a misclassification of fallow land to as-
phalt roads and parking lots in a less extend. In addition, 
much of the fallow land was misclassified as vegetation. 

Figure 12: Class labels based on two different land cover datasets provided by GEE.
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4. Conclusion

Today satellite imagery is an integral part of the IAEA’s 
monitoring and verification efforts. The images can be used 
in a variety of ways to confirm that a country’s nuclear facil-
ities are in compliance with the specifications in internation-
ally signed treaties and declarations made by the member 
states. Remote sensing data is for example well suited for 
planning on-site inspections and recognizing as well as 
monitoring features of interest within nuclear facilities in or-
der to detect suspicious activities at an early stage. Thanks 
to the ongoing development of new satellite systems and 
the amount of data which will further increase in the com-
ing years, even more applications are conceivable. Many 
providers offer their satellite data at low cost or even for 
free. For example, initiatives such as the Copernicus pro-
gram, the European Union's Earth observation program, 
have revolutionized the market. Remote sensing has thus 
arrived in the Big Data era posing challenges regarding 
data management, processing, and analysis. The ever 
growing quantity of data and its properties require the fur-
ther automation of processing and the development of 
quantitative techniques that have the potential to improve 
upon traditional techniques in terms of computational cost, 
reliability and objectivity. Several novel technologies have 
been developed to meet these challenges . In this re-
search, three tools namely Apache Airflow, Rasdaman and 
google Earth Engine have been utilized to develop a 

the accuracy and effectiveness of each classifier is the 
overall accuracy (OA) representing the percentage of cor-
rectly classified instances out of all instances and the Kap-
pa coefficient used to test reliability.

The RF classifier outperformed the CART classifier with an 
average overall accuracy of 91.40 % in contrast to 74.57 %. 
The average kappa coefficients for RF, and CART classifi-
ers were 0.85 and 0.64, respectively.

In addition, there are a few issues that should be investigat-
ed if the proposed method is applied not only for verifica-
tion purposes. First, the spatial resolution of the Sentinel-2 
satellite is limited to 10m, which results in mixed pixels con-
taining different surface classes. This has an impact on the 
FeatureCollection creation and the classification. If these 
images had been used for feature selection, the low resolu-
tion would have caused problems regarding its concrete lo-
cation. Therefore, a basemap of high-resolution reference 
imagery available directly within GEE was used. The down-
side is that this is a mosaic of images, with no information 
available on the date of acquisition. On the other hand, the 
classification performance is not accurate enough for these 
pixels. So, existing land cover maps were used for feature 
collection. However, since these maps capture only the 
land cover situation for one specific year the application for 
verification purposes is limited.

Figure 13: Classification maps using RF and CART classifiers for the years 2017 of AOI1 and 2019 of AOI2.

AOI1 AOI2 AOI3 AOI4 AOI5 AOI6
CART RF CART RF CART RF CART RF CART RF CART RF

Overall Accuracy (%) 83.07 91.02 76.63 98.34 68.95 86.65 72.05 89.78 73.67 92.61 73.05 89.98

Kappa Coefficient 0.65 0.76 0.70 0.92 0.63 0.81 0.59 0.85 0.60 0.89 0.64 0.86

Correct Area (%) 78.35 84.76 58.12 81.39 61.86 73.95 53.45 64.77 55.13 72.24 57.16 75.12

Table 1: Overall accuracy and Kappa statistic of CART and RF classifiers based on land cover tagged maps.
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Figure 14: Classification maps using RF and CART classifiers based on two different predefined land 
cover classes provided by GEE. The corresponding land cover map legend is shown in Figure 13.
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