Production of ^{236}gNp and ^{236}Pu at NPL

Simon Jerome, Cyrus Larijani, Peter Ivanov and Paddy Regan

National Physical Laboratory, UK

Overview

- NPL and measurement
- How we got to here from there
- Neptunium-236g
- Plutonium-236
- Additional work
The NPL: 1900 – now

- Facilitates trade via measurement science – **metrology**
- 36,000 m² national laboratory facility on the Teddington site
 - Houses all NPL operations (except Neutron Metrology)
 - One of the most extensive and sophisticated measurement science building in the world
 - ~750 Staff, of whom ~550 directly involved in science
Ionising Radiation at NPL

- **Radiation Dosimetry**
 - Ranges from environmental levels to high-dose industrial levels
 - Mainly electrons and photons – from <10 keV to 25 MeV
 - Includes protons and light ions for radiotherapy
 - Modelling (Mainly Monte Carlo) underpins measurement

- **Neutron Metrology**
 - Neutron flux measurements from thermal to fast/cosmic energies
 - Thermal energies – reactor physics
 - Fast neutrons – nuclear data, fission and fusion
 - Cosmic rays – dose rates in aerospace, effects in electronics

- **Radioactivity**
 - Measurement standards for sealed and unsealed sources
 - Production of calibration sources for industry and hospitals
 - Calibration of measurement instruments and of sources
 - Researching new radionuclide production techniques
Why worry about 237Np?

- **Long lived actinide**
 - Apart from naturals, fourth longest lived
 - $t_{1/2}$: $2.144(7) \times 10^6$ years
 - 247Cm: $15.6(5) \times 10^6$ years
 - 236U: $23.43(1) \times 10^6$ years
 - 244Pu: $80.8(7) \times 10^6$ years

- **Decay product of 241Pu**
 - Activation of 235U: 235U$(n,\gamma)^{236}$U$(n,\gamma)^{237}$U(β)237Np
 - Member of ‘$4n+1$’ chain
 - 245Cm(α)241Pu(β)241Am(α)237Np(α)233Pa(β)233U(α)229Th…209Bi

- **The forgotten actinide**
 - May have been >20 PBq (5.2 t) 241Pu discharged from Sellafield since 1950
Why are we interested in ^{236}Np?

- **Nuclear physics**
 - A long-lived *odd-odd* nucleus ($^{236}\text{g}\text{Np}$)
 - Some outstanding needs to improve decay data

- **Chemical yield tracer**
 - Precursor to ^{236}Pu ($^{236}\text{m}\text{Np}$)
 - Suitable isotope dilution tracer for ^{237}Np measurements ($^{236}\text{g}\text{Np}$)

- **Some difficulties**
 - Singularly difficult to make – not a decay product
 - Production data is a bit sparse
 - Chemistry is interesting
Tracer Requirements

What do we expect from a tracer?

- Tracer exhibits same chemical behaviour as analyte:
 - Implies that the same element should be employed

- Tracer should not interfere with analyte measurement:
 - Preferable to measure by the same technique, or if the tracer does not register in the analyte measurement (and vice versa)

- Chemical equilibrium between tracer and analyte established at earliest possible point in the analysis:
 - Add the tracer as soon as possible and (for solids) employ total dissolution
Tracer Requirements

Furthermore:

- **Tracer should not be present in samples being analysed:**
 - Using nuclides present in the samples being analysed complicates analysis

- **Tracer should not introduce contamination:**
 - Purity requirement: may differ for mass spectrometry and radiometric measurements

- **Tracer should be traceable to national or international standards:**
 - Not strictly so: Measurements of γ emitting tracers may be relative
Which nuclide?

Need to be able to carry out mass spectrometry

- Neptunium-236g is only practical option
 - Can’t be produced by radioactive decay or neutron activation, so use charged particle irradiation
 Proton or deuteron activation of uranium at <50 MeV
 - LinAc irradiation uses $^{237}\text{Np} (\gamma,\text{n})$
 Can’t separate ^{236}gNp from ^{237}Np

- Production routes
 - $^{236}\text{U}(p,n)^{236}\text{Np}$ also produces ^{234}Np and ^{235}Np
 - $^{238}\text{U}(p,3n)^{236}\text{Np}$ also produces ^{237}Np and ^{238}Np
 - $^{235}\text{U}(d,n)^{236}\text{Np}$ also produces ^{235}Np and ^{237}Np
 - $^{236}\text{U}(d,2n)^{236}\text{Np}$ also produces ^{235}Np and ^{237}Np
 - $^{238}\text{U}(d,4n)^{236}\text{Np}$ also produces ^{237}Np and ^{238}Np
Nuclear parameters for 236Np

- **What we know**
 - 236Np is an odd-odd isobar
 - Q value of decay energy is (just) below β^+ energy of 1.022 MeV
 - Spin states not measured
 - Half lives 22.5 h (236mNp) and 1.55×10^5 years (236gNp)

- **What we assume (from data)**
 - The ground state has high spin – inferred from decay states which are high spin
 - *Vice versa* for the metastable state
Decay parameters for 236Np

- **Some nuclear physics**
 - Angular momentum coupling rules for $Z=93$ protons ($5/2^+$) and $N=143$ ($7/2^-$) neutrons give spins of $I^\pi=6^-$ and $I^\pi=1^-$ from $I^{\text{tot}} = 7/2^- \pm 5/2^+$
 - In other words...the 234U nucleus is a closed shell (92 protons and 142 neutrons)
 - Proton and neutron external to this shell with aligned spins are in the lower energy ground state
 - Proton and neutron external to this shell with opposed spins are in the higher energy metastable state

- **Decay parameters**
 - 236mNp: β^-: $47(\pm1)\%$
 EC: $53(\pm1)\%$
 - 236gNp: β^-: $12.0(\pm0.6)\%$
 EC: $87.8(\pm0.6)\%$
 - 236gNp: α: $\sim0.16\%$ at 5.01 MeV predicted
<table>
<thead>
<tr>
<th>Reaction</th>
<th>^{235}U</th>
<th>^{236}U</th>
<th>^{238}U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product</td>
<td>Data</td>
<td>Product</td>
</tr>
<tr>
<td>p,n</td>
<td>^{235}Np</td>
<td>No data</td>
<td>^{236}Np</td>
</tr>
<tr>
<td>p,2n</td>
<td>n/a</td>
<td>^{235}Np</td>
<td>σ presented</td>
</tr>
<tr>
<td>p,3n</td>
<td>n/a</td>
<td>n/a</td>
<td>^{236}Np</td>
</tr>
<tr>
<td>p,4n</td>
<td>n/a</td>
<td>n/a</td>
<td>^{235}Np</td>
</tr>
<tr>
<td>d,n</td>
<td>^{236}Np</td>
<td>σ presented</td>
<td>^{237}Np</td>
</tr>
<tr>
<td>d,2n</td>
<td>^{235}Np</td>
<td>σ presented</td>
<td>^{236}Np</td>
</tr>
<tr>
<td>d,3n</td>
<td>^{235}Np</td>
<td>σ presented</td>
<td>^{237}Np</td>
</tr>
<tr>
<td>d,4n</td>
<td>n/a</td>
<td>n/a</td>
<td>^{236}Np</td>
</tr>
<tr>
<td>d,5n</td>
<td>n/a</td>
<td>n/a</td>
<td>^{235}Np</td>
</tr>
</tbody>
</table>

NPL Management Ltd - Internal
Cross sections for ^{236}Np

Neptunium-236 production

Cross section (millibarns) vs. Particle energy (MeV)

- $^{238}\text{U}(p,3n)^{236}\text{Np}$ (Aaltonen et al, 1994)
- $^{238}\text{U}(p,3n)^{236}\text{Np}$ (Ageev et al, 1987)
- $^{238}\text{U}(d,4n)^{236}\text{Np}$ (Lessler et al, 1966)
- $^{236}\text{U}(d,2n)^{236}\text{Np}$ (Lessler et al, 1966)
- $^{235}\text{U}(d,n)^{236}\text{Np}$ (Wing et al, 1959)
- $^{236}\text{U}(d,n)^{236}\text{Np}$ (Ageev et al, 1994)
- $^{238}\text{U}(p,n)^{236}\text{Np}$ (Aaltonen et al, 1996)
- $^{238}\text{U}(d,4n)^{236}\text{Np}$ (Guzhovskii et al, 1994)
- $^{238}\text{U}(d,4n)^{236}\text{Np}$ (Wing et al, 1959)
- $^{235}\text{U}(d,n)^{236}\text{Np}$ (Lessler et al, 1966)
Production of 236gNp

Uranium-236 irradiation with protons

Cross section (millibarns)

Proton energy (MeV)

- U-236(p,2n)Np-235 (Aaltonen et al, 1996)
- U-236(p,2n)Np-235 (Aaltonen et al, 2005)
- U-236(p,n)Np-236 (Aaltonen et al, 1996)
- U-236(p,n)Np-236 (Aaltonen et al, 2005)
Summary of data

- **Do we form 236mNp or 236gNp?**
 - High spin state of 236gNp favours (or it should do!) high angular momentum reactions
 - Therefore, use higher incident energy for irradiation
 - But at higher energies, the cross section is lower

- **Impurities**
 - Higher energies risk the production of 235Np and 234Np
 - Lower energies risk the production of 237Np
 - Thick sources risk the production of 237Np due to beam energy degradation
 - Thick sources also yield more fission products
Formation ratio of $^{236\text{m}}\text{Np}:^{236\text{g}}\text{Np}$

Published data mainly theoretical

Ratio data as a function of energy

Ratio

Particle energy (MeV)

$R = \sigma_{\text{m}} / \sigma_{\text{g}}$
Summary of Irradiations

- Different options
 - The problem is the cross section data
 - Data generated 1959-1990
 - $^{\text{236}}\text{U}(p,n)^{\text{236}}\text{Np}$ 2011–date 10-20 mb (20-40 MeV) ✓
 - $^{\text{238}}\text{U}(p,3n)^{\text{236}}\text{Np}$ 2010–date 50-70 mb (15-30 MeV) ✓
 - $^{\text{235}}\text{U}(d,n)^{\text{236}}\text{Np}$ 2009–2011 ~5 mb (10-20 MeV) ✗

- Experiments from 2009
 - Aimed at $^{\text{236}}\text{Pu}$ and now $^{\text{236}}\text{gNp}$ production
 - Production of $^{\text{236}}\text{Pu}$ implies production of $^{\text{236}}\text{mNp}$ and $^{\text{236}}\text{gNp}$
 - Experiments in 2010 and 2011 with $^{\text{235}}\text{U}$ also produced large amounts of $^{\text{234}}\text{Np}$ and, presumably, $^{\text{235}}\text{Np}$
Target preparation

- Uranium metal: ☓ ☓ ☓
 - Catches fire, definitely not good
- Aqueous $\text{UO}_2(\text{NO}_3)_4$: ☓
 - Flaky, spalls easily, not good
- $\text{UO}_2(\text{NO}_3)_4$ in acetone: ☓ ☓
 - Goes all weird, not good
- UO_2 solid: ☑ ☑
 - Dissolution can take time
 - Does not burn, spall or expand
 - Therefore good
Separation chemistry

Either extraction chromatography
- TEVA resin
- Still use 10M HCl/0.1M NH₄I to remove plutonium
- Recover neptunium with dilute hydrochloric acid
- Need to recover ^{236}U

or anion exchange chromatography
- AG1-X8 resin
- Still use 10M HCl/0.1M NH₄I to remove plutonium
- Recover neptunium with dilute nitric acid
- Need to recover ^{236}U
Measurement of 236Np fraction
Summary to March 2014

- Neptunium-236g
 - Still need to finally tie down irradiation option
 - $^{236}\text{U}(p,n)$ purest
 - $^{238}\text{U}(p,3n)$ highest
 - Chemistry known, but requires final definition to maximise yield
 - Purity still to be measured (how much ^{237}Np...appears to be low)
 - Will measure α-emission branch (predicted, not observed), so decay scheme balances
 - Prediction that 1 µg available in 4Q14
 - Should be able to produce 1-10 µg annually
Additional benefits

- Fission products of interest (per irradiation)
 - Top interest
 - ^{93}Zr, ^{113m}Cd, ^{135}Cs, ^{151}Sm
 - Medium interest
 - ^{91}Y, ^{103}Ru, ^{155}Eu
 - ^{95}Zr, ^{106}Ru, ^{144}Ce
- Separation chemistry
 - Known for Y^{3+}, Zr^{4+}, Cs^+, Ce^{3+}, Sm^{3+} and Eu^{3+}
 - Devised for Ru^{n+} and Cd^{2+}

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Activity</th>
<th>ng</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{91}Y</td>
<td>31 MBq</td>
<td>34</td>
</tr>
<tr>
<td>^{93}Zr</td>
<td>1.2 Bq</td>
<td>120</td>
</tr>
<tr>
<td>^{95}Zr</td>
<td>35 MBq</td>
<td>44</td>
</tr>
<tr>
<td>^{103}Ru</td>
<td>13 MBq</td>
<td>11</td>
</tr>
<tr>
<td>^{106}Ru</td>
<td>920 kBq</td>
<td>7</td>
</tr>
<tr>
<td>^{107}Pd</td>
<td><1 Bq</td>
<td>3</td>
</tr>
<tr>
<td>^{113m}Cd</td>
<td>2.6 kBq</td>
<td><1</td>
</tr>
<tr>
<td>^{126}Sn</td>
<td>1.6 Bq</td>
<td>2</td>
</tr>
<tr>
<td>^{135}Cs</td>
<td>9.1 Bq</td>
<td>180</td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>570 kBq</td>
<td>180</td>
</tr>
<tr>
<td>^{141}Ce</td>
<td>21 MBq</td>
<td>20</td>
</tr>
<tr>
<td>^{144}Ce</td>
<td>15 MBq</td>
<td>130</td>
</tr>
<tr>
<td>^{151}Sm</td>
<td>13 kBq</td>
<td>13</td>
</tr>
<tr>
<td>^{155}Eu</td>
<td>17 kBq</td>
<td>1</td>
</tr>
</tbody>
</table>
How we got to here from there

- **Plutonium-236**

 - Plutonium yield tracers: 236Pu, 242Pu, 244Pu (and 237Pu)

 - Using 237Pu is not considered (short half-life, EC/\(\gamma\), but…)

 - Running out of suitably pure 242Pu

 241Pu\((n,\gamma) ^{242}\)Pu – needs an isotope separator

 241Am\((n,\gamma) ^{242}\)Am\((EC) ^{242}\)Pu – needs patience

 - There’s hardly any suitably pure 244Pu

 242Pu\((n,\gamma) ^{243}\)Pu\((n,\gamma) ^{244}\)Pu – needs patience and a mass separator

 - Plutonium-236 was available (expensive and sporadic)

 \[\begin{align*}
 \sim 5 \text{ mb} & \quad ^{235}\text{U}(d,n) \\
 \sim 10-20 \text{ mb} & \quad ^{236}\text{U}(p,n) \text{ or } (d,2n) \\
 \sim 50-70 \text{ mb} & \quad ^{238}\text{U}(p,3n) \text{ or } (d,4n) \\
 \sim 5 \text{ mb} & \quad ^{237}\text{Np}(\gamma,n) \text{ or } (n,2n) \\
 \sim 5 \text{ mb} & \quad ^{235}\text{U}(\alpha,3n)^{236}\text{Pu} \\
 \end{align*} \]
Plutonium-236 (2009-)

- **Irradiation of 235U with deuterons**
 - Starting material $>$99.9% 235U
 - University of Birmingham cyclotron, 19 MeV deuterons

- **Irradiation of 236U with protons**
 - Starting material $>$99.7% 236U
 - University of Birmingham cyclotron, 25 MeV protons

- **Chemistry**
 - Dissolve target in hydrochloric acid
 - Pass through anion exchange column (AG1-X8, 100-200 mesh)
 - Uranium, neptunium, plutonium, zirconium and niobium retained by the resin
Plutonium-236 (2009-)

- Purification as before
 - Zirconium removed from column with 6M hydrochloric acid
 - Plutonium washed from column with 10M HCl/0.1M NH₄I
 - Neptunium washed from column with 3-6M hydrobromic acid
 - Repeat anion exchange steps to remove residual fission products
 - Niobium still difficult to remove

 Proton irradiation: purity obtained <0.001% \(^{238}\text{Pu}\)
 Deuteron irradiation: purity obtained ~0.02% \(^{238}\text{Pu}\)

 \(\text{(Proton irradiation of } U_{\text{nat}}: \text{purity obtained } 1.5(\pm0.2)\% \^{238}\text{Pu})}\)

- Preferred route, therefore, is \(^{236}\text{U}(p,n)^{236m}\text{Np}(\beta)^{236}\text{Pu}\)
- Yield \(^{238}\text{U}(p,3n)>^{236}\text{U}(d,2n)>^{236}\text{U}(p,n)>^{235}\text{U}(d,n)\)
Measurement of ^{236}Pu fraction

![Graph showing alpha energy (keV) vs. counts per channel with peaks at 4445 keV, 4494 keV, 5363 keV, 5320 keV, 5721 keV, and 5768 keV for ^{236}U and ^{236}Pu.]
Summary to March 2014

- **Plutonium-236**
 - Straightforward operation
 - Chemistry require not further research…refinements possible
 - Purity is good (<0.001% ^{238}Pu)
 - Can be made in quantities >100 kBq relatively easily
Continuing work

- **Project team**
 - Steven Judge, Group Leader (Project manager)
 - Prof Paddy Regan†, Nuclear Physics leader
 - Simon Jerome, Radiochemistry leader
 - Peter Ivanov, Lead chemist
 - Andy Pearce, Lead spectrometrist
 - Lynsey Keightley, γ-spectrometry
 - Cyrus Larijani, α-spectrometry

- **Aim for next 12-18 months**
 - Routine production of 236gNp
 - Maximise production; minimise impurities
 - Continue ‘production line’ for high purity 236Pu and selected fission products

† - Professor of radionuclide metrology at NPL/University of Surrey
Thank you for your attention.
Any questions?

National Measurement System

The National Measurement System delivers world-class measurement science & technology through these organisations

NPL, LGC, NEL, National Measurement Office

The National Measurement System is the UK’s national infrastructure of measurement laboratories, which deliver world-class measurement science and technology through four National Measurement Institutes (NMIs): LGC, NPL, the National Physical laboratory, TUV NEL the former National Engineering Laboratory, and the National Measurement Office (NMO).