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Abstract:

Spent fuel unloaded from the reactor core of Light Water 
Reactors is usually stored in the spent fuel pond of the 
reactor. The IAEA and EURATOM have a  number of 
dif ferent instruments in their verification instrument 
portfolios to verify spent fuel assemblies in the spent fuel 
pond. Depending on the situation, e.g., the type of the 
different fuel assemblies’ strata and the accessibility for 
future re-verification, dif ferent requirements for the 
verification exist.

Once spent fuel has been loaded into dry storage casks 
for transport and intermediate storage, it becomes difficult-
to-access. The IAEA requires that nuclear material prior to 
its becoming difficult-to-access must be verified using 
sampling plans that provide a high detection probability for 
a possible diversion of nuclear material from the spent fuel 
assemblies.

The paper discusses how to set up optimal sampling plans 
depending on the verification instruments, the assumed 
detection capabilities of these verification instruments, and 
the presumed diversion strategies.

Keywords: sampling plans; detection probability; invento-
ry verification; spent fuel ponds; difficult-to-access;

1. Introduction

Spent fuel assemblies (SFAs) from Light Water Reactors 
(LWRs) are usually stored in the spent fuel pond of the re-
actor. Typically, physical inventory verification (PIV), interim 
inspections or inspections to verify the transfers of spent 
fuel to dry storage, where the spent fuel is no longer ac-
cessible for verification, are carried out. As especially the 
verification of spent fuel prior to transfers to dry storage re-
quire a high detection probability (DP) for possible diver-
sions and therefore also a substantial amount of inspec-
tion effort, IAEA and EURATOM aim to optimize the 
effectiveness and efficiency of these verifications.

The IAEA and EURATOM have a set of instruments that 
can be used for the verification of spent fuel assemblies. In 
this paper we focus on the following three instruments: 
The Improved Cerenkov Viewing Device (ICVD), the Digital 
Cerenkov Viewing Device (DCVD), and the Passive 

Gamma Emission Tomography System (PGET). Each of 
these verification instruments has an associated detection 
capability and specific time to perform a measurement. 
Depending on different diversion assumptions and nuclear 
material strata, optimal sampling plans can be set up 
based on the different characteristics of the verification 
instruments.

The paper is structured as follows: Section 2 introduces 
the verification instruments together with their detection 
capabilities and the types of LWR assemblies considered 
in this paper. Also, the estimated net measurement time to 
carry out the measurements for an experienced and inex-
perienced inspector for any of the three instruments is giv-
en. Section 3 deals with the probabilistic aspects for find-
ing optimal sampling plans where approaches from [1], [2] 
and [3] are modified and tailored to the situation discussed 
here. In section 4 optimal sampling plans are determined 
for four examples where two types of LWR assemblies 
and two different required detection probabilities are as-
sumed. Section 5 deals with non-equal diversion scenari-
os which are usually not addressed in common safe-
guards literature. It is shown that the achieved DP depends 
on the order the sampling is performed. In section 6 the 
case of two classes of SFAs in one spent fuel pond is 
treated and issues in finding optimal sampling plans are 
discussed. Section 7 contains the derivations of the DP 
formula and section 8 points to future research activities 
and gives an outlook.

2. Instruments for verification of spent fuel
assemblies

In this paper we assume that the inventory of the spent 
fuel pond does not increase, which would be, e.g., the 
case after the final shutdown of the reactor. In this situation 
we consider applying the ICVD, the DCVD or the PGET to 
verify the content of the spent fuel pond. This section de-
scribes briefly the function and use of the three measure-
ment instruments.

2.1 ICVD and DCVD

Both the ICVD and DCVD are inspector tools imaging the 
Cerenkov light emitted from irradiated nuclear fuel assem-
blies in spent fuel ponds as described in [4], [5], [6].
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The ICVD and DCVD systems have been approved by the 
IAEA for gross defect verification in order to verify the 
presence of spent fuel. They both observe the Cerenkov 
light glow from above a storage pool. They are optimized 
for ultraviolet radiation and are capable of operating with 
facility lights turned on. When aligned vertically above the 
tops of fuel assemblies the verification instruments can 
distinguish irradiated fuel items from non-fuel items.

The ICVD is used for the qualitative verification (Yes/No 
decision) of irradiated nuclear fuel stored under water. It al-
lows the inspectors to conclude that the observed object 
is an irradiated fuel assembly. ICVD does not allow record-
ing the measurement results for further investigation. In 
case of inconclusiveness of the measurement results the 
measurement has to be repeated on-site.

The DCVD is further approved by the IAEA to detect partial 
defects. The camera is connected to a computer that uses 
specialized software to analyse the image. To carry out the 
measurements of SFAs stored in a pond the DCVD has to 
be placed at the fuel assembly-loading machine. Based on 
experiences a DCVD measurement campaign of spent fuel 
assemblies stored underwater may take up to one week 
depending on the number of SFAs to be verified.

In general, ICVD and DCVD have a minor impairment on 
the facility operation as there is no need for fuel movement 
or contact of the instrument with the potentially contami-
nated water of the spent fuel pond.

2.2 PGET

The PGET is approved by the IAEA for verification of spent 
nuclear fuel assemblies stored under water; see [7]. Fis-
sion products contained in SFAs emit gamma radiation, 
which is detected by two collimated CdZnTe detectors. 
The PGET system is assembled on a rotary baseplate in-
side a watertight torus shaped enclosure. To carry out the 
verification measurements the system is positioned under 
water on the top of an empty rack or on a special tripod on 
the bottom of the pond. In a next step a SFA is moved and 
placed in the center of the enclosure and held stationary to 
perform a measurement. Thus, compared to the ICVD and 
DCVD additional time to place the SFA in the PGET is 
needed.

2.3 LWR assemblies and detection capabilities 
of ICVD, DCVD and PGET

This paper considers two different types of LWR spent fuel 
such as fuel assemblies from pressurized water reactors 
(PWR) and boiling water reactors (BWR); see, e.g., [8]. 
PWRs are operated with fuel assemblies based on 
a square lattice arrangement characterized by the number 
of rods they contain, typically, 17  17 in current designs 

with for example 250 fuel pins per assembly. BWRs also 
use fuel assemblies, which are designed as a square lat-
tice, with rods geometries ranging from 6  6 to 10  10 
containing for example 96 fuel pins.

Each of the three verification measurement instruments 
has an associated detection capability: What is the proba-
bility (the so-called identification probability pinstrument ) that 
the instrument will identify a falsified SFA as falsified, if 
a certain percentage of material has been removed from 
the SFA (defect size)? According to [9], the identification 
probabilities can be assumed to be step functions taking 
values zero and one:

p

p

ICVD =




%1 100
0

if  of the pins have been removed
otherwise

DDCVD =
%1 30

0
if  of the pins or more have been removed
otherwiise

if  of the pins or more have been remov





=pPGET

. %1 0 38 eed
otherwise0





 (1)

Six comments: First, the identification probabilities in 
Eq. (1) are based on field trials on multiple fuel types for 
a range of burnups, cooling times, and number of SFAs 
measured; see [9]. Second, Eq.  (1) indicates that the 
measurement errors are not normally distributed, as it is 
usually assumed; see [3]. Third, more complex identifica-
tion probabilities than in Eq.  (1) could be considered if 
needed. The approach in this paper, however, would have 
to be modified. Fourth, Eq. (1) quantifies for our purposes 
the terms gross, partial and bias defect which are usually 
defined only qualitatively; see 10.7 in [6]. Fifth, because 
most of the modern LWR assembly designs allow for the 
exchange of single fuel pins for defective rods, Eq. (1) cov-
ers the diversion of single pins. Sixth, a replacement of 
pins with dummy pins, which contain material leading to 
a similar signal as a spent fuel pin, is not considered in this 
paper.

Estimates of the net measurement time for one SFA for 
any of the three instruments are listed in Table 1, based on 
personal communication [10]. Note that the set-up time for 
all three instruments is equal concerning the positioning of 
the fuel element handling machine; in addition, PGET re-
quires 2 more minutes for the SFA placement.

ICVD DCVD PGET
experienced 

inspector
3 seconds 1 minute

5 minutes 
measurement plus 

2 minutes 
placement 

procedure of the 
SFA into the PGET

inexperienced 
inspector

7 seconds 2 minute

Table 1: Estimated net measurement times for an experience/
inexperienced inspector for the three instruments.
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Recent experiences show, that the DCVD net measure-
ment time of an experienced inspector is about 2 minutes 
per SFA instead of 1 minute depending, e.g., on the quality 
of water, the pond conditions, the light-contrast of the im-
age, and the burnup of the SFAs.

3. One class of SFAs: The detection probability

This section deals with the probabilistic aspects for finding 
optimal sampling plans, where approaches from [1], [2] and 
[3] are modified and tailored to the situation discussed here.

Let N be the number of SFAs in the spent fuel pond, L be 
the number of fuel pins per SFA, x Pu  be the average 
amount of plutonium (Pu) per SFA, and SQ be the signifi-
cant quantity (SQ = 8 [kg] for Pu), i.e. “the approximate 
amount of nuclear material for which the possibility of man-
ufacturing a nuclear explosive device cannot be excluded.”; 
see 3.14 in [6]. We focus in this paper on the diversion of 
Pu, because it should be more attractive to a diverter than 
low enriched uranium, as low enriched uranium 1) requires 
additional enrichment to become weapon usable material 
and 2) the number of fuel pins to be removed to get a sig-
nificant quantity of 75 [kg] is usually much higher compared 
to acquiring a significant quantity of 8 [kg] for Pu.

IAEA sampling plans are usually based on the equal diver-
sion hypothesis (see [3]) which means that each falsified 
item is falsified by the same amount of nuclear material. In 
the context discussed here, this hypothesis means that the 
diverter removes rpin pins from a certain number of SFAs 
(items). For example: 10 pins are removed from 20 SFAs, 
but not: 4 pins are removed from 21 SFAs and 30 pins from 
10 SFAs (see section 5). The number rpin ranges from the 
smallest possible number of removed pins rmin (defined be-
low) up to the maximum number of removed pins L.

How many SFAs have to be falsified if rpin pins are removed 
from each of them? Because the diverter wants to acquire 
one significant quantity (1 SQ), rpin and the respective number 
of falsified SFAs r r rSFA SFA pin= ( ) have to fulfil the inequality

x
L

r r r SQPu
pin SFA pin× × ( ) ≥ ,

which yields, assuming that the diverter will not falsify 
more SFAs than necessary,

 r r
SQ L

rxSFA pin
Pu pin

( ) = ×










,

1
 (2)

where the ceiling a  of a real number a is the smallest inte-
ger not less than a. Because the number of falsified SFAs 
must be smaller or equal than the total number of SFAs of 
the spent fuel pond, i.e. r r NSFA pin( ) ≤  for all admissible rpin, 
the minimum number of removed pins rmin is, using Eq. (2), 
the smallest integer fulfilling SQ L r Nx Pu min×



 ≤/ / , i.e.

r
SQ L
Nxmin

Pu

= ×




.

Because it is assumed that the diverter can acquire 
1 SQ  from the SFAs in the spent fuel pond, we must 

have  SQ Nx Pu≤ ,  wh ich  y i e lds ,  us ing  Eq.   (2), 

r L SQ x N NSFA Pu( ) = 



 ≤   =/ , i.e. the existence of rmin 

can be assured. Therefore, the set of diversion strategies 
is assumed to be

 X r r Lmin min: , , , ,= + …{ }1  (3)

and r rSFA pin( ) according to Eq. (2) defines for any r Xpin ∈  
the number of falsified SFAs. Eq. (2) is illustrated in Table 2 
for L = 96, x Pu = 2 [kg] and SQ = 8 [kg] yielding rmin = 1 if 
N ≥ 384.

Table 2 illustrates two effects: First, different rpin values may 
lead to the same number of falsified SFAs. Thus, a rational 
diverter removes 1, 2, …, 23, 24, 26, 28, 30, 32, 35, 39, 
43, 48, 55, 64, 77 or 96 pins, or in general:

fo
X

r X r r r r

r r L
pin SFA pin SFA pin

pin min

� :
:

,
=

∈ −( ) > ( )
= + …




1

1r all









.

Because of the properties of the DP as a function of rpin  
(see below), only the three values r L L Lpin ∈   − −{ }0 3 1 1. , ,  
need to be considered for f inding an appropriate 

rpin 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r rSFA pin( ) 384 192 128 96 77 64 55 48 43 39 35 32 30 28

15 16 17 18 19 20 21 22 23 24,25 26,27 28,29 30,31 32,33,34

26 24 23 22 21 20 19 18 17 16 15 14 13 12

35…38 39…42 43…47 48…54 55…63 64…76 77…95 96

11 10 9 8 7 6 5 4

Table 2: Pairs r r rpin SFA pin, ( )( ) that achieve 1 SQ = 8 [kg].
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verification sampling plan; the specific nature of the set of 
diversion strategies does not matter and thus, we use the 
set X  (not X�) as set of diversion strategies. Second, not 
any number rSFA (e.g., r rSFA pin( ) = 25) can be achieved un-
der the equal diversion hypothesis and the pin removal 
scenario.

Let p rinstrument pin( ) be the instruments’ identification proba-
bility in case rpin pins are removed from an SFA. Then 
Eq. (1) yields for all L ≤ 100 / 0.38 = 263

 

p r
for r L
for r L

p r
fo

ICVD pin
pin

pin

DCVD pin

( ) =
=

≤ ≤ −






( ) =

1
0 1 1

1 rr L r L

for r L

p r

pin

pin

PGET pin

0 3

0 1 0 3 1

1

.

.

  ≤ ≤

≤ ≤   −







( ) = .for r Lpin1≤ ≤

 (4)

Sampling plans are usually based on the DP. In the con-
text analysed in this paper we are interested in the detec-
tion of the diversion of 1 SQ of Pu from the spent fuel 
pond by performing item by item tests. This means here 
that the number of reported pins in an SFA is compared 
to the number of identified pins in that SFA. For that pur-
pose, the inspector verifies n1 SFAs with the ICVD, n2 with 
the DCVD, and n3 with the PGET, where per verified SFA 
only one measurement instrument is applied. Using the 
probability mass function of a hypergeometric distributed 
random variable, see, e.g., [1] or [11], the detection proba-
bility DP N n n n rpin, , , ,1 2 3( ) is, using Eq. (4), given by
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keeping in mind that 
a
b









 =: 0 for b > a where a and b are 

integers, and where r rSFA pin( ) is given by Eq. (2). The deri-

vation of Eq. (5) is done in section 7. Note that because the 
identification capability of the measurement instruments is 
modelled as a Yes/No decision, i.e. an attribute test is per-
formed, the DP degenerates to a selection probability. 
Nevertheless, we still call the expression in Eq. (5) DP be-
cause this term is commonly used; see [3] for a detailed 
discussion. Also note, that in the three regions of rpin-val-
ues in Eq. (5) only the numbers ni are utilized for which the 

respective measurement instrument(s) yield(s) the identifi-
cation probability of one.

We seek for a sampling plan (n1, n2, n3) that achieves the 
required DP 1− βreq  (set by the IAEA and/or EURATOM) in-
dependent of the actual diversion strategy, i.e.

 DP N n n n r r Xpin req pin, , , , .1 2 3 1( ) ≥ − ∈β for all  (6)

A sampling plan is called optimal, if it fulfils inequality (6), 
and if it minimizes the number of SFAs to be verified with 
the most expensive/time-consuming method (i.e. n3), then 
minimizes the number of SFAs to be verified with the sec-
ond most expensive/time-consuming method (i.e. n2), and 
finally, minimizes the number of SFAs to be verified with 
the least expensive/time-consuming method (i.e. n1), i.e. 
the lexicographic optimization criterion is applied; see [12].

Because the DP as defined by Eq. (5) is a monotone de-
creas ing funct ion of rpin,  i .e.  DP N n n n rpin, , , ,1 2 3( ) ≥ 
DP N n n n rpin, , , ,1 2 3 1+( ) for rpin and rpin + 1 from the same 
region, inequality (6) has to be valid for the three values 
r L L Lpin ∈   − −{ }0 3 1 1. , , .  Thus,  the  samp l ing  p lan 
(n1, n2, n3) achieves the required DP 1− βreq if and only if

max
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 (7)

Because for any N, any 1 ≤ r < N and any 1 ≤ r ≤ N – r we 
have, see, e.g., [1] or [3],
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the sampling plan
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3
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 (8)

fulfils inequality (7) where r rSFA pin( ) is given by Eq. (2). Note 
that the sampling plan given by Eq. (8) does not need to 
be optimal because it may overestimate the sample size 
by up to 3 SFAs (this is a general result in the attribute 
sampling context; see [13]).

4. One class of SFAs: Examples

In this section optimal sampling plans are determined for 
the examples in Table 3 where we vary 1) the required DP 
of 0.5 and 0.9 (first column), and 2) the type of SFAs in the 
spent fuel pond (BWR and PWR; first row). All other entries 
in Table 3 are explained in the course of this section.
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For a detailed discussion, we consider the BWR – 90 % ex-
ample: The spent fuel pond contains N = 2500 BWR SFAs, 
each having L = 96 fuel pins and an average amount 
x Pu = 2 [kg] of Pu per SFA. Table 4 illustrates in the first 
and second row the pairs r r rpin SFA pin, ( )( )  that achieve 
1 SQ = 8 [kg] of Pu, where r rSFA pin( ) is given by Eq. (2). The 
third to fifth row represents the instruments’ identification 
probability according to Eq. (4).

Table 4 demonstrates that in case of a bias defect (i.e. only 
small numbers of removed pins) only the PGET is capable 
to identify a falsified SFA as falsified, whereas only in case 
of a gross defect (all pins are removed) all instruments lead 
to the identification probability one.

For illustration, consider the sampling plan  (n1, n2, n3) = 
(10,65,25). Figure  1 shows the achieved DP given by 
Eq. (5) as a function of the number rpin of removed pins. 
The two vertical lines divide the graph into three regions: in 
the left region (1 ≤ rpin ≤ 28) only the PGET is capable to 
identify a  falsified SFA as falsified, in the middle region 
(29 ≤ rpin ≤ 95) both the PGET and the DCVD are capable 
to identify a falsified SFA as falsified, and only in the right 
region (rpin = L = 96) all three instruments are successful in 
identifying a falsified SFA as falsified.

Figure 1: Achieved DP for the sampling plan 
(n1, n2, n3) = (10, 65, 25).

Three comments on Figure 1:

First, the sampling plan (n1, n2, n3) = (10,65,25) achieves 
a DP of about 0.1315 (horizontal dots) independent of the 
actual diversion strategy because the minimum of 
DP N n n n rpin, , , ,1 2 3( )  is attained at rpin = 28, and we obtain, 
using Eq. (5), that DP N n n n, , , , .1 2 3 28 0 1315( ) ≈ .

Second, the DP curve is a monotone (but not strictly) de-
creasing function of rpin  in the regions rpin = 1, …, 28 and  

BWR, N = 2500, L = 96, x Pu = 2 PWR, N = 500, L = 250, x Pu = 9

1 0 5− =βreq .

ICVD: 74

DCVD: 203

PGET: 121

experienced: 17 hours

inexperienced: 21 hours

ICVD: 0

DCVD: 170

PGET: 80

experienced: 12 hours

inexperienced: 15 hours

1 0 9− =βreq .

ICVD: 172

DCVD: 543

PGET: 379

experienced: 53 hours

inexperienced: 62 hours

ICDV: 0

DCVD: 231

PGET: 219

experienced: 29 hours

inexperienced: 33 hours

Table 3: Examples.

rpin 1 2 … 28 29 30 … 95 96

r rSFA pin( ) 384 192 … 14 14 13 … 5 4

p rICVD pin( )
0

0

1p rDCVD pin( )
1

p rPGET pin( ) 1

Table 4: Pairs r r rpin SFA pin, ( )( ) that achieve 1 SQ = 8 [kg] and the identification probabilities as a function of the number rpin of removed pins.



8

ESARDA BULLETIN, No. 58, June 2019

rpin = 29, …, 95, respectively. This result is plausible, be-
cause with an increasing number of removed pins the 
number of falsified SFAs in the pond decreases (i.e. 
r r r rSFA pin SFA pin( ) ≥ +( )1 ), and thus, the probability to select 
at least one falsified SFA when r rSFA pin( ) are in the pond is 
greater or equal than the probability to select at least one 
falsified SFA when r rSFA pin +( )1  are in the pond.

Third, the value of the DP is constant, e.g., for all num-
bers rpin = 48, …,54, because they lead to the same num-
ber of falsified SFAs (r rSFA SFA48 54 8( ) = … = ( ) = , see Ta-
ble 2) and because in that region both the PGET and the 
DCVD are capable to identify a falsified SFA as falsified. 
In contrast, although r rSFA SFA28 29 14( ) = ( ) =  we see that 
DP N n n n, , , ,1 2 3 28( ) < DP N n n n, , , ,1 2 3 29( ) , because in case  
rpin = 29 both the PGET and the DCVD are being used 
and n2 > 0.

Suppose the inspector wants to achieve a required DP of 
(say) 0.9. How many SFAs does he need to verify? Eq. (8) 
implies that the sampling plan (n1, n2, n3) = (172,543,380)  
achieves a DP of 0.9, i.e. at least 380 SFAs must be veri-
fied by the PGET. This sampling plan, however, is not opti-
mal in the sense defined after inequality (6), because the 
number of PGET measurements can be reduced to 379 
and the sampling plan (172,543,379) still achieves a DP of 
0.9. This illustrates that the sampling plan given by Eq. (8) 
does not have to be optimal (see also the comment at the 
end of section 3). Using the net measurement times from 
Table 1, we see that an experienced inspector needs 
about 53 hours net measurement time, while an inexperi-
enced one needs about 62 hours (times are rounded 
down to full hours). Both measurement times are unrealis-
tic and thus, the optimal sampling plan (172,543,379) may 
be infeasible in practice. The results of the BWR-90% ex-
ample are summarized in the respective field in Table 3.

The optimal sampling plans for the remaining examples in 
Table 3 can be obtained in the same way. Therefore, we 
just make two comments: First, the identification probabili-
ties for the PWR examples are, using Eq. (4),

p r
for r
for r

p r

ICVD pin
pin

pin

DCVD pin

( ) =
=

≤ ≤






( ) =

1 250
0 1 249

1 ffor r
for r

p r for r

pin

pin

PGET pin pin

75 250
0 1 74

1 1

≤ ≤
≤ ≤







( ) = ≤ ≤≤ 250.

Second, because Eq. (2) implies r rSFA SFA249 250 1( ) = ( ) = , 
the requirement DP N n n n req, , , ,1 2 3 95 1( ) ≥ − β  impl ies 
DP N n n n req, , , ,1 2 3 96 1( ) ≥ − β  for any n1 ≥ 0, and thus, there 
is no need to perform any ICVD measurement.

It has to be emphasized that the optimal sampling plans in 
Table 3 highly depend on the definition of the identification 
probabilities given by Eqs. (1) and (4).

To further illustrate the approach of section 3, we discuss 
two topics. First, we determine the optimal sampling plan if 
either “PGET and ICVD” (case 1) or “PGET and DCVD” 
(case 2) can be applied. Consider a spent fuel pond with  
N = 2000 BWR SFAs (with L = 96 pins each) and an aver-
age amount x SQPu = =0 5 4.  [kg] of Pu per SFA. If the re-
quired DP is 0.9, then the optimal sampling plans that 
achieve the DP of 0.9 are given by

case case1
296
1072

2
808
560

:
:
:

, :
:
:

ICVD
PGET

DCVD
PGET

The number of PGET measurements in case 1 is consider-
ably higher compared to case 2. This is due to the fact that 
in case 1 the PGET has to cover all pin removals rpin with 
1 95≤ ≤rpin , where in case 2 only the region 1 28≤ ≤rpin  
has solely covered by the PGET.

Second, suppose only 20 PGET measurements can be 
performed, but there is no restriction on the number of 
ICVD measurements, i.e. the entire spent fuel pond can be 
verified by the ICVD. Thus, we consider the sampling plan  
(n1,  n2,  n3)  =  (1980,0,20) that yields, using Eq.  (5), an 
achieved DP of about 0 028. , which is usually far too low in 
this context.

In this section only one class of SFAs has been considered 
which is a valid assumption if the variation (variance) of the 
amount of Pu amongst the SFAs in the spent fuel pond is 
not “too big”. An example with two classes of SFAs is pre-
sented in section 6.

5. One class of SFAs: Non-equal diversion 
scenarios

In this section non-equal diversion scenarios, which are 
usually not addressed in common safeguards literature, 
are considered.

The sampling plans in sections 3 and 4 are based on the 
equal diversion hypothesis which leads to the relation be-
tween rpin and r rSAF pin( ) in Eq. (2). The diverter, however, 
does not need to falsify SFAs according to this hypothesis. 
For illustration, let N = 2000, L = 96 and x Pu = 2  [kg] and 
let the diverter removes 4 pins from 21 SFAs and 30 pins 
from 10 SFAs. Then he acquires exactly

2
96

4 21 30 10 8
[ ]

[ ] ,
kg

kg× × + ×( ) =

of Pu. Using Table 4, we see that the 21 SFAs falsified by 
4 pins each can only be successfully identified as falsified 
by the PGET, while the 10 SFAs falsified by 30 pins each 
can be identified as falsified by both the PGET and the 
DCVD.

Let us assume that the required DP is 0.5. Following the 
same procedure as described in section 4 for BWR-90 % 
example, we f ind the sampling plan (n1,  n2,  n3)  =  
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(59,162,97) to be optimal if the equal diversion hypothesis 
is true. What is the achieved DP if the diverter removes the 
pins as indicated above and if the inspector sticks to the 
optimal sampling plan (59,162,97)?

We first determine the achieved DP in case the sampling 
is performed in the order n3 → n2 → n1, which means that 
we first sample the SFAs verified by the PGET, then we 
sample (from the remaining N – n3 SFAs) the SFAs veri-
fied by the DCVD, and finally we sample (from the re-
maining  N – n3 – n2 SFAs) the SFAs verified by the ICVD. 
The event of non-detection occurs if for the PGET meas-
urements none of the 21 + 10 = 31 SFAs are in the sam-
ple, and for the subsequent DCVD measurements none 
of the 10 SFAs with 30 missing pins are in the sample. 
Thus, the achieved DP is

1

31
0

31 10
0

10

3

3

3

2−











−





























− −









−

N
n

N
n

N n
n

N nn
n

3

2

0 91










≈ . .

In case the sampling is done in the order n3 → n2 → n1, the 
event of non-detection occurs if for the DCVD measure-
ments none of the 10 SFAs with 30 missing pins but i SFAs 
out of the 21 SFAs with 4 missing pins (and which can only 
be identified with PGET) are sampled, and for the subse-
quent PGET measurements none of 21 – i remaining SFAs 
with 4 missing pins, are sampled. The achieved DP is, us-
ing the multivariate hypergeometric distribution (see [11]), 
given by

1

21 10
0

31 21
0

0

21
2

2

−




















−
−





















−




=
∑
i

i
N
n i

N
n

i 




− − −( )









−









≈

N n i
n

N n
n

2

3

2

3

21

0 85. .

Two comments on this example: First, the achieved DP 
depends on the order the sampling is performed: The or-
der n3 → n2 → n1 leads – at least in this example – to 
a higher DP than the order n2 → n3 → n1. Whether this is 
true in general has to be investigated. In section 7 it is 
shown that under the equal diversion hypothesis the order 
of sampling does not have any influence on the DP.

Second, the achieved DP is – for both orders considered 
above and using the optimal sampling plan (59,162,97) – 
higher than 0.5 which was used for finding (59,162,97) 
under the equal diversion hypothesis. Therefore, one can 
ask whether this hypothesis is a worst case in the sense 
that the sampling plan found under the equal diversion 
hypothesis also achieves the required DP for all non-
equal diversion scenarios, i.e. in case the diverter does 
not remove pins according to the equal diversion 
hypothesis.

6. Two classes of SFAs: Example

We now consider two classes of BWR (with L = 96 pins 
each) SFAs with N1 = 217 and N2 = 297 SFAs per class in 
the same spent fuel pond, e.g., one class of SFAs with 
high burn-up and one class of SFAs with very low burn-up. 
The average amounts of Pu are assumed to be x1 1 5= .  
[kg] and x 2 3=  [kg] of Pu per SFA in class i = 1,2. Again, 
the diverter wants to remove pins from SFAs to acquire 
8 [kg] of Pu. In contrast to sections 3 and 4 he can now 
get the material from both classes: If mi, i = 1,2, denotes 
the nuclear material mass diverted from class  i, then we 
have m m1 2 8+ ≥ . To keep the example manageable, we 
only take special values of  ( , )m m1 2  into account:

M : , , , , , , , , , , , , , , , , ,= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }8 0 7 1 6 2 5 3 4 4 3 5 2 6 17 0 8 ..  (9)

Because 8 ≤ x Ni i  for i  =  1,2, we have 8 0 0 8, , ,( ) ( ) ∈M . 
Within each class the diverter is – as before – assumed to 
remove rpin, i from r m rSFA i pin i, ,( ) SFAs of class  i, i  =  1,2, 
where, using Eq. (2),

 r m r
m

x rSFA i i pin i
i

i pin i
, ,

,

, .( ) = ×











96 1  (10)

Let n1,j resp. n2,j, j = 1,2,3, denote the sample size in class 1 
and 2, where n1,1 resp. n2,1 SFAs are verified by the ICVD, 
n1,2 resp. n2,2 by the DCVD, and n1,3 resp. n2,3 by the PGET, 
i.e. the first index indicates the class and the second one 
the measurement method. The identification probabilities 
are given in Table 4.

Using Eq. (3), the sets X m1 1( ) and X m2 2( ) of diversion strat-
egies in the first resp. second class is for i = 1,2 given by

X m
m L
x N

Li i
i

i i

( ) = ×











…











, , .

The overall (over both classes together) DP is, for any 
m m M1 2,( ) ∈  and for any r r X m X mpin pin, ,,1 2 1 1 2 2( ) ∈ ( ) × ( ), giv-

en by

= 

DP N1, N2, n1,1, n1,2, n1,3, n2,1, n2,2, n2,3, m1, rpin,1, m2, rpin,2 

1 - 1 - DP (N1, n1,1, n1,2, n1,3, m1, rpin,1) 1 - DP (N2, n2,1, n2,2, 
n2,3, m2, rpin,2),

(11)

where DP N1, n1,1, n1,2, n1,3, m1, rpin,1 and DP N2, n2,1, n2,2, n2,3, 
m2, rpin,2 are defined by Eq.  (5) in which r m rSFA i i pin i, ,,( )  of 
Eq. (10) is used.

As before we are interested in sampling plans  n1,1, n1,2, n1,3  
and  n2,1, n2,2, n2,3  that achieve the required DP 1− βreq  inde-
pendent of the actual diversion strategy. Because the di-
verter may acquire 1 SQ from one of the classes only (see 
the left and right element in the set M in Eq. (9)), the ap-
proach is section 3 implies that  n1,1, n1,2, n1,3  and  n2,1, n2,2, 
n2,3  have to fulfil inequality (7) for each class separately. 
This gives for βreq = 0 1.  the optimal sampling plans

  n1,1, n1,2, n1,3  = (0,45,24) and  n2,1, n2,2, n2,3  = (0,98,61) (12)
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for each class individually. Does the sampling plan given 
by Eq. (12) achieves the overall DP of 0.9 for all diversion 
strategies m m M1 2,( ) ∈  or only for m m1 2 0 8, ( , )( ) =  and 
m m1 2 8 0, ( , )( ) = ? I.e. we need to check whether the 

achieved overall DP is at least 0.9 for all pairs m m M1 2,( ) ∈ , 
i.e. whether

min min , , ,
( , ) ,

,
, ,m m M r r X m X mpin pin

DP N N n n
1 2 1 2 1 1 2 2

1 2 11∈ ( )∈ ( )× ( ) 112 13 21 2 2 2 3 1 1 2 2, , , , , , ,, , , , , , , ,n n n n m r m rpin pin( )  (13)

is at least 0.9. According the multiplicative structure of the 
overall DP in Eq. (11), the minimization of the overall DP 
over the set r r X m X mpin pin, ,,1 2 1 1 2 2( ) ∈ ( ) × ( ) is equivalent to 
minimizing the individual DPs DP N1, n1,1, n1,2, n1,3, m1, rpin,1 
and DP N2, n2,1, n2,2, n2,3, m2, rpin,2 over X m1 1( ) and X m2 2( ), 
respectively.

Consider the pair m m1 2 2 6, ( , )( ) = . Then Eqs. (5) and (12) 
imply (rounded to the fourth digit after the dot)

( )DP N n n n r
r

for rpin

pin

p1 11 12 13 1

1

2
0 4467 28
0 5358, , , ,
.
., , , ,

,

=
=

iin

pinr
,

,.
1

1

95
0 5358 96

=
=









and

( )DP N n n n r
r

for rpin

pin

p2 21 2 2 2 3 2

2

6
0 8037 28
0 9009, , , ,
.
., , , ,

,

=
=

iin

pinr
,

,. ,
2

2

95
0 7849 96

=
=









and thus, we get for the achieved overall DP by Eq. (11) 
and the comment after Eq. (13)

1 1 0 4467 1 0 7849 0 881 0 9− −( ) × −( ) = <. . . . ,

i.e. the sampling plan given by Eq. (12) does not achieve 
the required overall DP of 0.9. If we increase in Eq. (12) the 
ICVD measurements by 1 verification in each class, and 
the DCVD and PGET measurements by 3 verifications in 
each class, i.e. if we consider the sampling plan

n n n n n n11 12 13 21 2 2 2 3148 27 110164, , , , , ,, , , , , , , , ,( ) = ( ) ( ) = ( )and  (14)

then the overall DP of 0.9 is achieved for all diversion strat-
egies m m M1 2,( ) ∈ .

Two remarks: First, the sampling plan given by Eq. (14) is 
most likely not optimal, i.e. a sampling plan with shorter net 
measurement times might be found using more sophisticat-
ed methods other than just shifting sample sizes by a con-
stant. Second, the sampling plan given by Eq. (14) achieves 
the overall DP of 0.9 for all diversion strategies m m M1 2,( ) ∈  
but not necessarily for all diversion strategies of a more re-
fined set which includes M as a subset, such as

8 0 7 5 0 5 7 1 17 0 5 7 5 0 8, , . , . , , , , , , . , . ,( , )( ) ( ) ( ) … ( ) ( ){ }
in which, in contrast to Eq.  (9), an incremental step of 
0.5  [kg] is used. Indeed, the sampling plan given by 

Eq. (14) yields an achieved overall DP of about 0.898 for 
m m1 2 4 5 3 5, ( . , . )( ) = .

7. Derivations

To derive Eq. (5), we need to model the way the random 
sampling is performed: Quite generally, the following or-
ders are possible: n3  →  n2  →  n1, n3  →  n1  →  n2, 
n2  →  n1  →  n3, n2  →  n3  →  n1, n1  →  n2  →  n3 and 
n1 → n3 → n2 (n3 → n2 → n1 means: first sample the SFAs 
that are verified by the PGET, then sample the SFAs veri-
fied by the DCVD, and finally sample the SFAs verified by 
the ICVD) and the possibility to choose n1 + n2 + n3 SFAs 
from the population of SFAs and then distributed them to 
the verification methods i, i = 1,2,3. We claim that Eq. (5) is 
true independent of the chosen order, and prove this 
statement for the cases: 1) n3  →  n2  →  n1 and 
2) n2 → n3 → n1. Although the proof in case 1) is rather ob-
vious, we present it here in order to show the differences 
between cases 1) and 2).

Ad 1): If 1 0 3 1≤ ≤   −r Lpin . , then non-detection occurs if 
and only if none of the r rSFA pin( ) falsified SFAs are sampled 
for PGET verifications. The DCVD and ICVD measure-
ments do not influence the DP in this case. Thus, we get 
with r r rSFA SFA pin: ( )=

 1
0

13
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3

3
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
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

 (15)

which is the first equation in Eq. (5). If 0 3 1. L r Lpin  ≤ ≤ − , 
then non-detection occurs if and only if none of the 
r rSFA pin( ) falsified SFAs are sampled for PGET or DCVD ver-
ifications. The ICVD measurements do not influence the 
DP in this case. Thus, we have
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 (16)

where the equal sign can be shown by expanding the bi-
nomial coefficients. If rpin = L, then we get in analogy to 
Eq. (16) 

1 3

3

3

2

3

2

−

−



















− −









−









−N r
n
N
n

N n r
n

N n
n

N nSFA SFA ( 33 2

1

3 2

1

1 2 31

+ −









− +









= −

−
+ +










n r
n

N n n
n

N r
n n n

SFA SFA)

( )



+ +










N
n n n1 2 3

 (17)

i.e. the third equation in Eq. (5).

Ad 2): If 1 0 3 1≤ ≤   −r Lpin . , then non-detection occurs 1) if 
any SFA is sampled for DVCD verifications (i.e. even falsi-
fied SFAs can be sampled, because they can only be 
identified as falsified by the PGET), and 2) if none of the 
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remaining falsified SFAs are sampled for PGET verifica-
tions. Again, the ICVD measurements do not have an im-
pact on the DP in this case. Thus, we obtain for the DP 
with r r rSFA SFA pin: ( )=

1
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.
 (18)

Note that the lower bound of the sum in Eq. (18) is due to 
the fact that N r n iSFA− ≥ −2  and N n r i nSFA− − −( ) ≥2 3 , 
w h i c h  i s  e q u i v a l e n t  t o  i n N rSFA≥ − −2 ( )  a n d 
i n n N rSFA≥ + − −2 3 ( ).

Eqs. (15) and (18) demonstrate the influence of the order 
the sampling is done on the DP formula. As announced, 
however, we show that both DP formulae are equivalent.

Expanding the binomial coefficients, the sum expression in 
Eq. (18) simplifies to
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Using the identity
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for any positive integers a, b and m, see [11], we finally get 
from Eq. (19), using the substitutions a → n2, b → N -  n2 +  
n3  and m → rSFA,
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

















,

i.e. the first line of Eq. (5) and Eq. (15). If 0 3 1. L r Lpin  ≤ ≤ − , 
then the non-detection event occurs if and only if none of 
the rSFA( rpin) falsified SFAs are sampled for the PGET and 
DCVD verifications. Thus, its probability is given by Eq. (16) 
changing n3 → n2 and n2 → n3. The case rpin = L is given by 
Eq. (17) again with the replacements n3 → n2 and n2 → n3.

8. Future work and outlook

The following four topics could be examined in future re-
search activities: First, a sensitivity analysis could be car-
ried out that studies the consequences of the instruments 
identification thresholds on optimal sampling plans. For ex-
ample: The ICVD identification threshold could be lower 
down from 100% to 50%, i.e. the identification probability 
is one if and only if “50% of the pins or more have been re-
moved”; see Eq. (1). For the DCVD, a reduction of the 30% 
threshold down to 10% could be considered.

Second, as expanded at the end of section 5, it should be 
investigated whether optimal sampling plans obtained un-
der the equal diversion hypothesis assure the required DP 
for all non-equal diversion scenarios. Also the influence of 
the order the sampling is performed on the DP needs to be 
investigated.

Third, in case of a non-homogeneous population of SFAs in 
a spent fuel pond the question of the appropriate number of 
classes of SFAs, which are characterized by different aver-
age amounts of Pu, has to be addressed. This number will 
depend on the SFAs masses and their variation (variance). 
A related topic has already been investigated in [14].

Fourth, the example in section 6 calls for an efficient algo-
rithm for the determination of optimal sampling plans in 
case more than one class of SFAs are stored in the spent 
fuel pond.

In a future scenario the use of robots could support the in-
spectorates to confirm the presence of spent fuel in 
a pond. In this light a nuclear focused robotics challenge 
co-hosted by the IAEA took place in November 2017 in 
Australia. The aim of this challenge was to attach an ICVD 
inside a small robotized floating platform, which autono-
mously carries out the verification measurements by mov-
ing across the surface of the pond; see [15]. The conse-
quences of using robots on the sample sizes can be 
studied as soon as it becomes clear which inspection ac-
tivities can be carried through or supported by robots and 
what the robots’ identification capabilities are.
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